Skip to main content
Log in

Physical Characterization of Orthorhombic AgInS2 Nanocrystalline Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanocrystalline thin films of AgInS2 were synthesized using an inert gas condensation technique. The grazing incident in-plane x-ray diffraction technique was used to detect the crystal structure of the deposited and annealed thin films. The results confirmed that the as-deposited film shows an amorphous behavior and that the annealed film has a single phase crystallized in an orthorhombic structure. The orthorhombic structure and particle size were detected using high-resolution transmission electron microscopy. The particle size (\( P_{\rm{s}}\)) estimated from micrograph images of the nanocrystalline films were increased from 6 nm to 12 nm as the film thickness increased from 11 nm to 110 nm. Accordingly, increasing the film thickness up to 110 nm reflects varying the optical band gap from 2.75 eV to 2.1 eV. The photocurrent measurements were studied where the fast rise and decay of the photocurrent are governed by the recombination mechanism. The electrical conductivity behavior was demonstrated by two transition mechanisms: extrinsic transition for a low-temperature range (300–400 K) and intrinsic transition for the high-temperature region above 400 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Akaki, S. Kurihara, M. Shirahama, K. Tsurugida, T. Kakeno, and K. Yoshino, J. Mater. Sci.: Mater. Electron. 16, 393 (2005).

    Google Scholar 

  2. J.-Y. Chang, G.-Q. Wang, C.-Y. Cheng, W.-X. Lin, and J.-C. Hsu, J. Mater. Chem. 22, 10609 (2012).

    Article  Google Scholar 

  3. M.C. Santhoshkumar and B. Pradeep, J. Mater. Sci. Lett. 22, 287 (2003).

    Article  Google Scholar 

  4. Y. Akaki, S. Kurihara, M. Shirahama, K. Tsurugida, S. Seto, T. Kakeno, and K. Yoshino, J. Phys. Chem. Solids 66, 1858 (2005).

    Article  Google Scholar 

  5. Y. Hamanaka, T. Ogawa, M. Tsuzuki, K. Ozawa, and T. Kuzuya, J. Lumin. 133, 121 (2013).

    Article  Google Scholar 

  6. S. Baek and K. Hong, J. Ceram. Process. Res. 6, 20 (2005).

    Google Scholar 

  7. J.L. Shay, B. Tell, L.M. Schiavone, H.M. Kasper, and F. Thiel, Phys. Rev. B 9, 1719 (1974).

    Article  Google Scholar 

  8. L.-H. Lin, W. Ching-Chen, C.-H. Lai, and T.-C. Lee, Chem. Mater. 20, 4475 (2008).

    Article  Google Scholar 

  9. M. Calixto-Rodriguez, H. Martínez, M.E. Calixto, Y. Pe˜na, D. Martínez-Escobar, A. Tiburcio-Silver, and A. Sanchez-Juarez, Mater. Sci. Eng. B 174, 253 (2010).

    Article  Google Scholar 

  10. Y. Hamanaka, T. Ogawa, and M. Tsuzuki, J. Phys. Chem. C 115, 1786 (2011).

    Article  Google Scholar 

  11. A.L. Efros and M. Rosen, Annu. Rev. Mater. Sci. 30, 475 (2000).

    Article  Google Scholar 

  12. Y. Masuda, Nanocrystals (Rijeka: Sciyo, 2010), p. 291.

    Book  Google Scholar 

  13. M. Ranjbar, M.A. Taher, and M. Sadeghinia, Bull. Mater. Sci. 37, 767 (2014).

    Article  Google Scholar 

  14. X. Tang, K. Yu, Q. Xu, E.S.G. Choo, G.K.L. Goh, and J. Xue, J. Mater. Chem. 21, 11239 (2011).

    Article  Google Scholar 

  15. M. Dai, S. Ogawa, T. Kameyama, K.-i. Okazaki, A. Kudo, S. Kuwabata, Y. Tsuboi, and T. Torimoto, J. Mater. Chem. 22, 12851 (2012).

    Article  Google Scholar 

  16. J.Q. Hu, B. Deng, K.B. Tang, C.R. Wang, and Y.T. Qian, J. Mater. Res. 16, 3411 (2001).

    Article  Google Scholar 

  17. X. Li, J.Z. Niu, H. Shen, W. Xu, H. Wang, and L.S. Li, CrystEngComm 12, 4410 (2010).

    Article  Google Scholar 

  18. A. Tadjarodi, A.H. Cheshmekhavar, and M. Imani, Appl. Surf. Sci. 263, 449 (2012).

    Article  Google Scholar 

  19. S. Peng, S. Zhang, S.G. Mhaisalkar, and S. Ramakrishna, Phys. Chem. Chem. Phys. 14, 8523 (2012).

    Article  Google Scholar 

  20. B.D. Cullitty, Elements of X-ray Diffraction, 2nd ed. (Boston: Addision Wesly, 1978).

    Google Scholar 

  21. V.A. Fonoberov and A.A. Balandin, Phys. Rev. B 70, 195410 (2004).

    Article  Google Scholar 

  22. J. Nanda, S. Sapra, D.D. Sarma, N. Chandrasekharan, and G. Hodes, Chem. Mater. 12, 1018 (2000).

    Article  Google Scholar 

  23. J.I. Pankove, Optical Processes in Semiconductors (New York: Prentice-Hall Inc, 1971), pp. 87–94.

    Google Scholar 

  24. J. Tauc, Amorphous and Liquid Semiconductors (New York: Plenum Publishing Company Ltd, 1974), pp. 159–220.

    Book  Google Scholar 

  25. M. Fox, Optical Properties of Solids (Oxford: Oxford University Press Inc., 2001), pp. 115–142.

    Google Scholar 

  26. D. Saikia, P.K. Saikia, P.K. Gogoi, and P. Saikia, Dig. J. Nanomater. Biostruct. 6, 589 (2011).

    Google Scholar 

  27. T. Ogawa, T. Kuzuya, Y. Hamanaka, and K. Sumiyama, J. Mater. Chem. 20, 2226 (2010).

    Article  Google Scholar 

  28. P. Poulopoulos, B. Lewitz, A. Straub, S.D. Pappas, S.A. Droulias, S. Baskoutas, and P. Fumaga, Appl. Phys. Lett. 100, 21190 (2012).

    Article  Google Scholar 

  29. C.A. Arredondo and G. Gordillo, Phys. B 405, 3694 (2010).

    Article  Google Scholar 

  30. C.H. Seager and G.E. Pike, Appl. Phys. Lett. 35, 709 (1979).

    Article  Google Scholar 

  31. G.E. Pike and C.H. Seager, J. Appl. Phys. 50, 3414 (1979).

    Article  Google Scholar 

  32. S.S. Nair and M.A. Khadar, Sci. Technol. Adv. Mater. 9, 035010 (2008).

    Article  Google Scholar 

  33. H.E. Romero and M. Drndic, Phys. Rev. Lett. PRL 95, 156801 (2005).

    Article  Google Scholar 

  34. D.K. Ferry, S.M. Goodnick, and J. Bird, Transport in Nanostructures, 2nd ed. (Cambridge: Cambridge University Press, 2009).

    Book  Google Scholar 

  35. N.F. Mott and E.A. Davis, Electronic Processes in Noncrystalline Materials (Oxford: Clarendon Press, 1971), p. 200.

    Google Scholar 

  36. E.A. El-Sayad, B.S. Farag, and A.T. Amin, Vacuum 84, 807 (2010).

    Article  Google Scholar 

  37. K.J. Hong, J.W. Jeong, T.S. Jeong, C.J. Youn, W.S. Lee, J.S. Park, and D.C. Shin, J. Phys. Chem. Solids 64, 1119 (2003).

    Article  Google Scholar 

  38. K. Hattori, K. Akamatsu, and N. Kamegashira, J. Appl. Phys. 71, 3414 (1992).

    Article  Google Scholar 

  39. M. Ortega-L´opez, A. Morales-Acevedo, and O. Solorza-Feria, Thin Solid Films 385, 120 (2001).

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the National Research Centre for funding this study from internal Project Number (10040206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manal A. Mahdy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Zawawi, I.K., Mahdy, M.A. Physical Characterization of Orthorhombic AgInS2 Nanocrystalline Thin Films. J. Electron. Mater. 46, 6430–6439 (2017). https://doi.org/10.1007/s11664-017-5662-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5662-y

Keywords

Navigation