Skip to main content
Log in

Microwave Dielectric Properties of BiCu2PO6 Ceramics with Low Sintering Temperature

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A BiCu2PO6 microwave dielectric ceramic was prepared using a solid-state reaction method. As the sintering temperature increased from 800°C to 880°C, the bulk density of BiCu2PO6 ceramic increased from 6.299 g/cm3 to 6.366 g/cm3; the optimal temperature was 860°C. The best microwave dielectric properties [permittivity (ɛ r ) = ∼16, a quality factor (Q × f) = ∼39,110 GHz and a temperature coefficient of resonant frequency (τ f ) = ∼−59 ppm/°C] were obtained in the ceramic sintered at 860°C for 2 h. Then, TiO2 with a positive τ f (∼+400 ppm/°C) was added to compensate the τ f value. The composite material was found to have a near-zero τ f (+2.7 ppm/°C) and desirable microwave properties (ɛ r  = 19.9, Q × f = 24,885 GHz) when synthesized at a sintering temperature of 880°C. This system could potentially be used for low-temperature co-fired ceramics technology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M.T. Sebastian, H. Wang, and H. Jantunen, Curr. Opin. Solid State Mater. Sci. 20, 151 (2016).

    Article  Google Scholar 

  2. D. Zhou, H. Wang, L.X. Pang, C.A. Randall, and X. Yao, J. Am. Ceram. Soc. 92, 2242 (2009).

    Article  Google Scholar 

  3. J. Guo, D. Zhou, H. Wang, Y.H. Chen, Y. Zeng, F. Xiang, Y. Wu, and X. Yao, J. Am. Ceram. Soc. 95, 232 (2012).

    Article  Google Scholar 

  4. J. Guo, D. Zhou, S.L. Zou, H. Wang, L.X. Pang, and X. Yao, J. Am. Ceram. Soc. 97, 1819 (2014).

    Article  Google Scholar 

  5. Y.Z. Hao, Q.L. Zhang, J. Zhang, C.R. Xin, and H. Yang, J. Mater. Chem. 22, 23885 (2012).

    Article  Google Scholar 

  6. S.H. Yoon, D.W. Kim, S.Y. Cho, and K.S. Hong, J. Eur. Ceram. Soc. 23, 2549 (2003).

    Article  Google Scholar 

  7. L.X. Pang, D. Zhou, and W.G. Liu, J. Am. Ceram. Soc. 97, 2032 (2014).

    Article  Google Scholar 

  8. C. Vaquero, C. Gutierrez-Canas, N. Galarza, and J.L.L. de Lpina, J. Aero. Sci. 102, 1 (2016).

    Article  Google Scholar 

  9. T. Joseph, M.T. Sebastian, H. Sreemoolanadhan, and V.K.S. Nageswari, Int. J. Appl. Ceram. Tec. 7, E98 (2010).

    Article  Google Scholar 

  10. T. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang, and R.E. Newnham, J. Am. Ceram. Soc. 77, 1909 (1994).

    Article  Google Scholar 

  11. I.R. Evans, J.S.O. Evans, and J.A.K. Howard, J. Mater. Chem. 12, 2648 (2002).

    Article  Google Scholar 

  12. S. Wanga, E. Pomjakushina, T. Shiroka, G. Deng, N. Nikseresht, Ch. Ruegg, H.M. Ronnow, and K. Conder, J. Cryst. Growth 313, 51 (2010).

    Article  Google Scholar 

  13. X. Xun, S. Uma, A. Yokochi, and A.W. Sleight, J. Solid State Chem. 167, 245 (2002).

    Article  Google Scholar 

  14. S.E. Nunes, C.H. Wang, K. So, J.S.O. Evans, and I.R. Evans, J. Solid State Chem. 222, 12 (2015).

    Article  Google Scholar 

  15. I.R. Evans, J.A.K. Howard, and A.W. Sleight, J. Solid. State. Sci. 7, 299 (2005).

    Article  Google Scholar 

  16. F. Abraham, M. Ketatni, G. Mairesse, and B. Mernari, Eur. J. Solid. Inorg. Chem. 31, 313 (1994).

    Google Scholar 

  17. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

    Article  Google Scholar 

  18. K.W. Plumb, K. Hwang, Y. Qiu, L.W. Harriger, G.E. Granroth, A.I. Kolesnikov, G.J. Shu, F.C. Chou, C. Ruegg, Y.B. Kim, and Y.J. Kim, Nat. Phys. 12, 224 (2016).

    Article  Google Scholar 

  19. K.W. Plumb, Z. Yamani, M. Matsuda, G.J. Shu, B. Koteswararao, F.C. Chou, and Y.J. Kim, Phys. Rev. B 88, 024402 (2013).

    Article  Google Scholar 

  20. R.D. Shannon, Acta. Cryst. 32, 751 (1976).

    Article  Google Scholar 

  21. W. Hume-Rothery, Acta Metall. 14, 17 (1966).

    Article  Google Scholar 

  22. M.Z. Hu, H.S. Gu, X.C. Chu, J. Qian, and Z.G. Xia, J. Appl. Phys. 104, 124 (2008).

    Google Scholar 

  23. D. Zhou, L.X. Pang, X. Yao, and H. Wang, Mater. Chem. Phys. 115, 126 (2009).

    Article  Google Scholar 

  24. L.X. Pang, H. Wang, D. Zhou, and X. Yao, J. Alloys Compd. 493, 626 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1632146), the Young Star Project of Science and Technology of Shaanxi Province (2016KJXX-34), the Fundamental Research Funds for the Central University, and the 111 Project of China (B14040). The SEM work was done at International Center for Dielectric Research (ICDR), Xi’an Jiaotong University, Xi’an, China and the authors thank Ms. Yan-Zhu Dai for her help in using SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, SZ., Zhou, D., Li, WB. et al. Microwave Dielectric Properties of BiCu2PO6 Ceramics with Low Sintering Temperature. J. Electron. Mater. 46, 6241–6245 (2017). https://doi.org/10.1007/s11664-017-5658-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5658-7

Keywords

Navigation