Skip to main content

Advertisement

Log in

Variation in the Optical Properties of the SiC-SiO2 Composite Antireflection Layer in Crystalline Silicon Solar Cells by Annealing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study showed the effects of annealing on a sol–gel-derived SiC-SiO2 composite antireflection (AR) layer and investigated the optical and photovoltaic properties of crystalline silicon (Si) solar cells. The SiC-SiO2 composite AR coating showed a considerable decrease in reflectance from 7.18% to 3.23% at varying annealing temperatures of 450–800°C. The refractive indices of the SiC-SiO2 composite AR layer were tuned from 2.06 to 2.45 with the increase in annealing temperature. The analysis of the current density–voltage characteristics indicated that the energy conversion efficiencies of the fabricated Si solar cells gradually increased from 16.99% to 17.73% with increasing annealing temperatures of 450–800°C. The annealing of the SiC-SiO2 composite AR layer in Si solar cells was crucial to improving the optical, morphological, and photovoltaic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Wakefield, M. Adair, M. Gardener, D. Greiner, C. Kaufmann, and J. Moghal, Sol. Energy Mater. Sol. Cells 134, 359 (2015).

    Article  Google Scholar 

  2. W. Hung and T. Chen, Sol. Energy Mater. Sol. Cells 133, 39 (2015).

    Article  Google Scholar 

  3. K. Ali, S. Khan, and M. Jafri, Int. J. Electrochem. Sci. 8, 7831 (2013).

    Google Scholar 

  4. K. Ali, S. Khan, and M. Jafri, Nanoscale Res. Lett. 9, 1 (2014).

    Article  Google Scholar 

  5. K. Ali, S. Khan, and M. Jafri, Int. J. Electrochem. Sci. 9, 7865 (2014).

    Google Scholar 

  6. D. Mahadik, R. Lakshmi, and H.C. Barshilia, Sol. Energy Mater. Sol. Cells 140, 61 (2015).

    Article  Google Scholar 

  7. X. Li, X. Yu, and Y. Han, J. Mater. Chem. C 1, 2266 (2013).

    Article  Google Scholar 

  8. J.L. Zhao, X.M. Li, J.M. Bian, W.D. Yu, and X.D. Gao, J. Cryst. Growth 276, 507 (2005).

    Article  Google Scholar 

  9. C.J. Brinker and A.J. Hurd, J. Phys. III 4, 1231 (1994).

    Google Scholar 

  10. L. Doeswijk, H. De Moor, D. Blank, and H. Rogalla, Appl. Phys. A 69, S409 (1999).

    Article  Google Scholar 

  11. S. Pellicori, Solar Cells 3, 57 (1981).

    Article  Google Scholar 

  12. P. Lalanne and G. M. Morris, Int. Soc. Opt. Photon. 2776, 300 (1996).

  13. S.T. Sai, R. Rao, K.C. Devarayapalli, and K.V. Sharma, Int. J. Eng. Adv. Technol. 3, 2249 (2013).

    Google Scholar 

  14. D. Hocine, M. Belkaid, M. Pasquinelli, L. Escoubas, J. Simon, G. Rivière, and A. Moussi, Mater. Sci. Semicond. Process. 16, 113 (2013).

    Article  Google Scholar 

  15. Y.J. Chang and Y.T. Chen, Opt. Express 19, A875 (2011).

    Article  Google Scholar 

  16. H. Çamurlu, Ö. Kesmez, E. Burunkaya, N. Kiraz, Z. Yeşil, M. Asiltürk, and E. Arpaç, Chem. Pap. 66, 461 (2012).

    Article  Google Scholar 

  17. M. Takashiri, S. Tanaka, and K. Miyazaki, J. Electron. Mater. 43, 1881 (2014).

    Article  Google Scholar 

  18. M. Takashiri, K. Kurita, H. Hagino, S. Tanaka, and K. Miyazaki, J. Appl. Phys. 118, 065301 (2015).

    Article  Google Scholar 

  19. R. Lechner, H. Wiggers, A. Ebbers, J. Steiger, M. S. Brandt, and M. Stutzmann, Phys. Status Solidi RRL, 1, 262 (2007).

  20. L.S. Faraji, R.P. Singh, and M. Allahkarami, Eur. Phys. J. Appl. Phys. 46, 20501 (2009).

    Article  Google Scholar 

  21. A. Jannat, W. Lee, M.S. Akhtar, Z.Y. Li, and O.B. Yang, Appl. Surf. Sci. 369, 545 (2016).

    Article  Google Scholar 

  22. R. Watanabe, Y. Eguchi, T. Yamada, and Y. Sa, Int. J. Photoenergy (2015). doi:10.1155/2015/147836.

  23. T. Kwon, S. Kim, D. Kyung, W. Jung, S. Kim, Y. Lee, Y. Kim, K. Jang, S. Jung, and M. Shin, Sol. Energy Mater. Sol. Cells 94, 823 (2010).

    Article  Google Scholar 

  24. R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983).

    Article  Google Scholar 

  25. H.A. Macleod, Thin-Film Optical Filters, 2nd ed. (New York: McGraw-Hill, 1989).

    Google Scholar 

  26. I. Lee, W. Lee, and J. Yi, J. Korean Phys. Soc. 39, 57 (2001).

    Google Scholar 

  27. E. Vazsonyi, K.D. Clercq, R. Einhaus, E.V. Kerschaver, K. Said, J. Poortmans, J. Szlufcik, and J. Nijs, Sol. Energy Mater. Sol. Cells 57, 179 (1999).

    Article  Google Scholar 

  28. G. López, P.R. Ortega, C. Voz, I. Martín, M. Colina, A.B. Morales, A. Orpella, and R. Alcubilla, Beilstein J. Nanotechnol. 4, 726 (2013).

    Article  Google Scholar 

  29. S.Y. Lien, D.S. Wuu, W.C. Yeh, and J.C. Liu, Sol. Energy Mater. Sol. Cells 90, 2710 (2006).

    Article  Google Scholar 

  30. B.S. Richards, S.F. Rowlands, C. B. Honsberg, and J. E. Cotter, Prog. Photovolt: Res. Appl. 11, 27 (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Shaheer Akhter or O-Bong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jannat, A., Li, Z.Y., Akhter, M.S. et al. Variation in the Optical Properties of the SiC-SiO2 Composite Antireflection Layer in Crystalline Silicon Solar Cells by Annealing. J. Electron. Mater. 46, 6357–6366 (2017). https://doi.org/10.1007/s11664-017-5639-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5639-x

Keywords

Navigation