Skip to main content

Diffusion Mechanism for Arsenic in Intrinsic and Extrinsic Conditions in HgCdTe

Abstract

Due to its low diffusivity and high activation rate, arsenic has become the dopant of choice in p/n HgCdTe high operating temperature technology. Its diffusion mechanism, however, remains imprecise. In this work, arsenic diffusion was studied in molecular beam epitaxy HgCdTe structures consisting of alternatively As-doped and intrinsic layers grown on a CdZnTe substrate. The diffusion coefficient of As was extracted from secondary ion mass spectroscopy concentration profiles. Annealings were performed for different temperatures, mercury partial pressures (P Hg), annealing times and cadmium atomic fractions. Fermi-level effect on diffusion was observed, indicating extrinsic conditions for diffusion at high As concentration. Based on the variation of As diffusivity with P Hg and As concentration, we propose that As diffusion occurs on both II and VI sublattices. Our results are consistent with the fact that AsVI diffusion is assisted by the Te interstitial, introducing donor levels in the bandgap, while AsII diffusion is assisted by the cation vacancy.

This is a preview of subscription content, access via your institution.

References

  1. L. Rubaldo, A. Brunner, P. Guinedor, R. Taalat, J. Berthoz, D. Sam-Giao, A. Kerlain, L. Dargent, N. Péré-Laperne, V. Chaffraix, ML. Bourqui, Y. Loquet and J. Coussement, in Proceedings of SPIE 9819, Infrared Technology and Applications XLII, vol. 98191l (2016).

  2. L. Shkledy, M. Brumer, P. Klipstein, M. Nitzani, E. Avnon, Y. Kodriano, I. Lukomsky and I. Shtrichman, in Proceedings of SPIE 9819, Infrared Technology and Applications XXLII, vol. 98191D (2016).

  3. D. Shaw, Semicond. Sci. Technol. 15, 911 (2000).

    Article  Google Scholar 

  4. S.H. Shin, J.M. Arias, M. Zandian, J.G. Pasko, L.O. Bubulac, and R.E. De Wames, J. Electron. Mater. 24, 609 (1995).

    Article  Google Scholar 

  5. D. Chandra, H.F. Schaake, M.A. Kinch, F. Aqariden, C.F. Wan, D.F. Weirauch, and H.D. Shih, J. Electron. Mater. 31, 715 (2002).

    Article  Google Scholar 

  6. D. Edwall, E. Piquette, J. Ellsworth, J. Arias, C.H. Swartz, L. Bai, R.P. Tompkins, N.C. Giles, T.H. Myers, and M.A. Berding, J. Electron. Mater. 33, 752 (2004).

    Article  Google Scholar 

  7. T.S. Lee, J. Garland, C.H. Grein, M. Sumstine, A. Jandeska, Y. Selamet, and S. Sivananthan, J. Electron. Mater. 29, 869 (2000).

    Article  Google Scholar 

  8. X. Biquard, I. Alliot, and P. Ballet, J. Appl. Phys. 106, 103501 (2009).

    Article  Google Scholar 

  9. M.A. Berding and A. Sher, Appl. Phys. Lett. 74, 685 (1998).

    Article  Google Scholar 

  10. P. Boieriu, Y. Chen, and V. Nathan, J. Electron. Mater. 31, 694 (2002).

    Article  Google Scholar 

  11. A.M. Itsuno, P.Y. Emelie, J.D. Phillips, S. Velicu, C.H. Grein, and P.S. Wijewarnasuriya, J. Electron. Mater. 39, 945 (2010).

    Article  Google Scholar 

  12. P. Capper and D. Shaw, Proc. SPIE 6294, 62940M (2006).

    Article  Google Scholar 

  13. G.L. Hansen and J.L. Schmitt, J. Appl. Phys. 54, 1639 (1983).

    Article  Google Scholar 

  14. D. Chandra, M.W. Goodwin, M.C. Chen, and J.A. Dodge, J. Electron. Mater. 22, 1033 (1993).

    Article  Google Scholar 

  15. D. Chandra, M.W. Goodwin, M.C. Chen, and L.K. Magel, J. Electron. Mater. 24, 599 (1995).

    Article  Google Scholar 

  16. A. Sher, M.A. Berding, M. van Schilfgaarde, and A.B. Chen, Semicond. Sci. Technol. 6, C59 (1991).

    Article  Google Scholar 

  17. H.R. Vydyanath and C.H. Hiner, J. Appl. Phys. 65, 3080 (1989).

    Article  Google Scholar 

  18. D. Chandra, H.F. Schaake, J.H. Tregilgas, F. Aqariden, M.A. Kicnh, and A.J. Syllaios, J. Electron. Mater. 29, 729 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Grenouilloux.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grenouilloux, T., Ferron, A., Péré-Laperne, N. et al. Diffusion Mechanism for Arsenic in Intrinsic and Extrinsic Conditions in HgCdTe. J. Electron. Mater. 46, 5394–5399 (2017). https://doi.org/10.1007/s11664-017-5637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5637-z

Keywords

  • HgCdTe
  • arsenic
  • diffusion
  • modeling