Abstract
Due to its low diffusivity and high activation rate, arsenic has become the dopant of choice in p/n HgCdTe high operating temperature technology. Its diffusion mechanism, however, remains imprecise. In this work, arsenic diffusion was studied in molecular beam epitaxy HgCdTe structures consisting of alternatively As-doped and intrinsic layers grown on a CdZnTe substrate. The diffusion coefficient of As was extracted from secondary ion mass spectroscopy concentration profiles. Annealings were performed for different temperatures, mercury partial pressures (P Hg), annealing times and cadmium atomic fractions. Fermi-level effect on diffusion was observed, indicating extrinsic conditions for diffusion at high As concentration. Based on the variation of As diffusivity with P Hg and As concentration, we propose that As diffusion occurs on both II and VI sublattices. Our results are consistent with the fact that AsVI diffusion is assisted by the Te interstitial, introducing donor levels in the bandgap, while AsII diffusion is assisted by the cation vacancy.
This is a preview of subscription content, access via your institution.
References
L. Rubaldo, A. Brunner, P. Guinedor, R. Taalat, J. Berthoz, D. Sam-Giao, A. Kerlain, L. Dargent, N. Péré-Laperne, V. Chaffraix, ML. Bourqui, Y. Loquet and J. Coussement, in Proceedings of SPIE 9819, Infrared Technology and Applications XLII, vol. 98191l (2016).
L. Shkledy, M. Brumer, P. Klipstein, M. Nitzani, E. Avnon, Y. Kodriano, I. Lukomsky and I. Shtrichman, in Proceedings of SPIE 9819, Infrared Technology and Applications XXLII, vol. 98191D (2016).
D. Shaw, Semicond. Sci. Technol. 15, 911 (2000).
S.H. Shin, J.M. Arias, M. Zandian, J.G. Pasko, L.O. Bubulac, and R.E. De Wames, J. Electron. Mater. 24, 609 (1995).
D. Chandra, H.F. Schaake, M.A. Kinch, F. Aqariden, C.F. Wan, D.F. Weirauch, and H.D. Shih, J. Electron. Mater. 31, 715 (2002).
D. Edwall, E. Piquette, J. Ellsworth, J. Arias, C.H. Swartz, L. Bai, R.P. Tompkins, N.C. Giles, T.H. Myers, and M.A. Berding, J. Electron. Mater. 33, 752 (2004).
T.S. Lee, J. Garland, C.H. Grein, M. Sumstine, A. Jandeska, Y. Selamet, and S. Sivananthan, J. Electron. Mater. 29, 869 (2000).
X. Biquard, I. Alliot, and P. Ballet, J. Appl. Phys. 106, 103501 (2009).
M.A. Berding and A. Sher, Appl. Phys. Lett. 74, 685 (1998).
P. Boieriu, Y. Chen, and V. Nathan, J. Electron. Mater. 31, 694 (2002).
A.M. Itsuno, P.Y. Emelie, J.D. Phillips, S. Velicu, C.H. Grein, and P.S. Wijewarnasuriya, J. Electron. Mater. 39, 945 (2010).
P. Capper and D. Shaw, Proc. SPIE 6294, 62940M (2006).
G.L. Hansen and J.L. Schmitt, J. Appl. Phys. 54, 1639 (1983).
D. Chandra, M.W. Goodwin, M.C. Chen, and J.A. Dodge, J. Electron. Mater. 22, 1033 (1993).
D. Chandra, M.W. Goodwin, M.C. Chen, and L.K. Magel, J. Electron. Mater. 24, 599 (1995).
A. Sher, M.A. Berding, M. van Schilfgaarde, and A.B. Chen, Semicond. Sci. Technol. 6, C59 (1991).
H.R. Vydyanath and C.H. Hiner, J. Appl. Phys. 65, 3080 (1989).
D. Chandra, H.F. Schaake, J.H. Tregilgas, F. Aqariden, M.A. Kicnh, and A.J. Syllaios, J. Electron. Mater. 29, 729 (2000).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Grenouilloux, T., Ferron, A., Péré-Laperne, N. et al. Diffusion Mechanism for Arsenic in Intrinsic and Extrinsic Conditions in HgCdTe. J. Electron. Mater. 46, 5394–5399 (2017). https://doi.org/10.1007/s11664-017-5637-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-017-5637-z
Keywords
- HgCdTe
- arsenic
- diffusion
- modeling