Skip to main content
Log in

Enhancement of Thermoelectric Properties in Surface Nanostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermoelectric properties of TiN/MgO surface nanostructures have been determined using first-principles calculations based on the nonequilibrium Green’s function (NEGF) method. Through structural modification of the surfaces at the atomistic level, we find that the metallic TiN thin-film layer becomes semiconducting with a small bandgap, which enhances the Seebeck coefficient, while the electrical conductivity remains high at room temperature. Hence, a much larger thermoelectric figure of merit is obtained compared with bulk. These findings indicate the possibility of designing thermoelectric devices with surface nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Koumoto and T. Mori, eds., Thermoelectric Nanomaterials: Materials Design and Applications (Berlin: Springer, 2013).

    Google Scholar 

  2. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

  3. J.O. Sofo and G.D. Mahan, Appl. Phys. Lett. 65, 2690 (1994).

    Article  Google Scholar 

  4. C. Wood, Rep. Prog. Phys. 51, 459 (1988).

    Article  Google Scholar 

  5. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  Google Scholar 

  6. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  Google Scholar 

  7. P. Reddy, S.-Y. Jang, R.A. Segalman, and A. Majumdar, Science 315, 1568 (2007).

    Article  Google Scholar 

  8. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, and J.R. Heath, Nature 451, 168 (2008).

    Article  Google Scholar 

  9. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  Google Scholar 

  10. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  11. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  12. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).

    Article  Google Scholar 

  13. Y.-L. Li, Z. Fan, and J.-C. Zheng, J. Appl. Phys. 113, 083705 (2013).

    Article  Google Scholar 

  14. J.-T. Wang, H. Mizuseki, Y. Kawazoe, T. Hashizume, M. Naitoh, D.-S. Wang, and E.-G. Wang, Phys. Rev. B 67, 193307 (2003).

    Article  Google Scholar 

  15. C. Liu, I. Matsuda, M. D’angelo, S. Hasegawa, J. Okabayashi, S. Toyoda, and M. Oshima, Phys. Rev. B 74, 235420 (2006).

    Article  Google Scholar 

  16. J. Sun, H. Shi, T. Siegrist, and D.J. Singh, Appl. Phys. Lett. 107, 153902 (2015).

    Article  Google Scholar 

  17. K. Kobayashi, H. Takaki, N. Kobayashi, and K. Hirose, JPS Conf. Proc. 5, 011013 (2015).

    Google Scholar 

  18. W.-C. Chen, C.-Y. Peng, and L. Chang, Nanoscale Res. Lett. 9, 551 (2014).

    Article  Google Scholar 

  19. I. Ohkubo, T. Aizawa, R. Ang, and T. Mori, in preparation.

  20. S. Zerkout, S. Achour, A. Mosser, and N. Tabet, Thin Solid Films 441, 135 (2003).

    Article  Google Scholar 

  21. H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, and K. Hirose, J. Appl. Phys. 119, 014302 (2016).

    Article  Google Scholar 

  22. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).

    Article  Google Scholar 

  23. K. Hirose and N. Kobayashi, Quantum Transport Calculations for Nanosystems (Singapore: Pan Stanford, 2014).

    Google Scholar 

  24. H. Takaki, N. Kobayashi, and K. Hirose, J. Nanomater. 2014, 172169 (2014).

    Article  Google Scholar 

  25. H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, and T. Mori, Appl. Phys. Lett. 110, 072107 (2017).

    Article  Google Scholar 

  26. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  27. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  28. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejón, and D. Sanchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002).

    Article  Google Scholar 

  29. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  Google Scholar 

  30. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  31. N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  Google Scholar 

  32. L. Kleinman and D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).

    Article  Google Scholar 

  33. T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004).

    Article  Google Scholar 

  34. T. Takeuchi, J. Jpn. Inst. Met. 69, 403 (2005).

    Article  Google Scholar 

  35. U. Sivan and Y. Imry, Phys. Rev. B 33, 551 (1986).

    Article  Google Scholar 

  36. T. Markussen, A.-P. Jauho, and M. Brandbyge, Phys. Rev. Lett. 103, 055502 (2009).

    Article  Google Scholar 

  37. S. Datta, Lessons from Nanoelectronics: A New Perspective on Transport (Singapore: World Scientific, 2012).

    Book  Google Scholar 

  38. G. Grosso and G.P. Parravicini, Solid State Physics (London: Academic, 2000).

    Google Scholar 

  39. H. Wang, Y. Xu, M. Shimono, Y. Tanaka, and M. Yamazaki, Mater. Trans. 48, 2419 (2007).

    Article  Google Scholar 

  40. J.M. Sanchez, J.R. Barefoot, R.N. Jarrett, and J.K. Tien, Acta Metall. 32, 1519 (1984).

    Article  Google Scholar 

  41. K. Kobayashi, H. Takaki, M. Shimono, N. Kobayashi, and K. Hirose, Jpn. J. Appl. Phys. 56, 04CK06 (2017).

    Article  Google Scholar 

  42. K. Kobayashi, N. Kobayashi, and K. Hirose, e-J. Surf. Sci. Nanotechnol. 12, 230 (2014).

    Article  Google Scholar 

  43. J.S. Chawla, X.Y. Zhang, and D. Gall, J. Appl. Phys. 113, 063704 (2013).

    Article  Google Scholar 

  44. For example, see, K. Zberecki, M. Wierzbicki, J. Barnas, and R. Swirkowicz, Phys. Rev. B 88, 115404 (2013).

Download references

Acknowledgements

We would like to thank Dr. T. Mori of NIMS for his constant support. The numerical calculations were performed using the numerical materials simulator (SGI) at NIMS and the supercomputer systems B at the ISSP, University of Tokyo. We also acknowledge support from JSPS KAKENHI Grant No. JP26105011 and JST CREST Grant No. JPMJCR15Q6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiko Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takaki, H., Kobayashi, K., Shimono, M. et al. Enhancement of Thermoelectric Properties in Surface Nanostructures. J. Electron. Mater. 46, 5593–5598 (2017). https://doi.org/10.1007/s11664-017-5635-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5635-1

Keywords

Navigation