Abstract
The thermoelectric properties of TiN/MgO surface nanostructures have been determined using first-principles calculations based on the nonequilibrium Green’s function (NEGF) method. Through structural modification of the surfaces at the atomistic level, we find that the metallic TiN thin-film layer becomes semiconducting with a small bandgap, which enhances the Seebeck coefficient, while the electrical conductivity remains high at room temperature. Hence, a much larger thermoelectric figure of merit is obtained compared with bulk. These findings indicate the possibility of designing thermoelectric devices with surface nanostructures.
Similar content being viewed by others
References
K. Koumoto and T. Mori, eds., Thermoelectric Nanomaterials: Materials Design and Applications (Berlin: Springer, 2013).
L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
J.O. Sofo and G.D. Mahan, Appl. Phys. Lett. 65, 2690 (1994).
C. Wood, Rep. Prog. Phys. 51, 459 (1988).
R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).
T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).
P. Reddy, S.-Y. Jang, R.A. Segalman, and A. Majumdar, Science 315, 1568 (2007).
A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, and J.R. Heath, Nature 451, 168 (2008).
A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).
G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).
L.E. Bell, Science 321, 1457 (2008).
K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).
Y.-L. Li, Z. Fan, and J.-C. Zheng, J. Appl. Phys. 113, 083705 (2013).
J.-T. Wang, H. Mizuseki, Y. Kawazoe, T. Hashizume, M. Naitoh, D.-S. Wang, and E.-G. Wang, Phys. Rev. B 67, 193307 (2003).
C. Liu, I. Matsuda, M. D’angelo, S. Hasegawa, J. Okabayashi, S. Toyoda, and M. Oshima, Phys. Rev. B 74, 235420 (2006).
J. Sun, H. Shi, T. Siegrist, and D.J. Singh, Appl. Phys. Lett. 107, 153902 (2015).
K. Kobayashi, H. Takaki, N. Kobayashi, and K. Hirose, JPS Conf. Proc. 5, 011013 (2015).
W.-C. Chen, C.-Y. Peng, and L. Chang, Nanoscale Res. Lett. 9, 551 (2014).
I. Ohkubo, T. Aizawa, R. Ang, and T. Mori, in preparation.
S. Zerkout, S. Achour, A. Mosser, and N. Tabet, Thin Solid Films 441, 135 (2003).
H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, and K. Hirose, J. Appl. Phys. 119, 014302 (2016).
M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
K. Hirose and N. Kobayashi, Quantum Transport Calculations for Nanosystems (Singapore: Pan Stanford, 2014).
H. Takaki, N. Kobayashi, and K. Hirose, J. Nanomater. 2014, 172169 (2014).
H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, and T. Mori, Appl. Phys. Lett. 110, 072107 (2017).
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).
J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejón, and D. Sanchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002).
D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).
J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).
L. Kleinman and D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).
T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004).
T. Takeuchi, J. Jpn. Inst. Met. 69, 403 (2005).
U. Sivan and Y. Imry, Phys. Rev. B 33, 551 (1986).
T. Markussen, A.-P. Jauho, and M. Brandbyge, Phys. Rev. Lett. 103, 055502 (2009).
S. Datta, Lessons from Nanoelectronics: A New Perspective on Transport (Singapore: World Scientific, 2012).
G. Grosso and G.P. Parravicini, Solid State Physics (London: Academic, 2000).
H. Wang, Y. Xu, M. Shimono, Y. Tanaka, and M. Yamazaki, Mater. Trans. 48, 2419 (2007).
J.M. Sanchez, J.R. Barefoot, R.N. Jarrett, and J.K. Tien, Acta Metall. 32, 1519 (1984).
K. Kobayashi, H. Takaki, M. Shimono, N. Kobayashi, and K. Hirose, Jpn. J. Appl. Phys. 56, 04CK06 (2017).
K. Kobayashi, N. Kobayashi, and K. Hirose, e-J. Surf. Sci. Nanotechnol. 12, 230 (2014).
J.S. Chawla, X.Y. Zhang, and D. Gall, J. Appl. Phys. 113, 063704 (2013).
For example, see, K. Zberecki, M. Wierzbicki, J. Barnas, and R. Swirkowicz, Phys. Rev. B 88, 115404 (2013).
Acknowledgements
We would like to thank Dr. T. Mori of NIMS for his constant support. The numerical calculations were performed using the numerical materials simulator (SGI) at NIMS and the supercomputer systems B at the ISSP, University of Tokyo. We also acknowledge support from JSPS KAKENHI Grant No. JP26105011 and JST CREST Grant No. JPMJCR15Q6.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Takaki, H., Kobayashi, K., Shimono, M. et al. Enhancement of Thermoelectric Properties in Surface Nanostructures. J. Electron. Mater. 46, 5593–5598 (2017). https://doi.org/10.1007/s11664-017-5635-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-017-5635-1