Skip to main content
Log in

Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The influence of dopant concentration on both in-plane mobility and minority carrier lifetime in long-wave infrared InAs/InAsSb superlattices (SLs) was investigated. Unintentially doped (n-type) and various concentrations of Be-doped (p-type) SLs were characterized using variable-field Hall and photoconductive decay techniques. Minority carrier lifetimes in p-type InAs/InAsSb SLs are observed to decrease with increasing carrier concentration, with the longest lifetime at 77 K determined to be 437 ns, corresponding to a measured carrier concentration of p 0 = 4.1 × 1015 cm−3. Variable-field Hall technique enabled the extraction of in-plane hole, electron, and surface electron transport properties as a function of temperature. In-plane hole mobility is not observed to change with doping level and increases with reducing temperature, reaching a maximum at the lowest temperature measured of 30 K. An activation energy of the Be-dopant is determined to be 3.5 meV from Arrhenius analysis of hole concentration. Minority carrier electrons populations are suppressed at the highest Be-doping levels, but mobility and concentration values are resolved in lower-doped samples. An average surface electron conductivity of 3.54 × 10−4 S at 30 K is determined from the analysis of p-type samples. Effects of passivation treatments on surface conductivity will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.V. Olson, E.A. Shaner, J.K. Kim, J.F. Klem, S.D. Hawkins, L.M. Murray, J.P. Prineas, M.E. Flatté, and T.F. Boggess, Appl. Phys. Lett. 101, 092109 (2012).

    Article  Google Scholar 

  2. E.H. Steenbergen, B.C. Connelly, G.D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J.M. Fastenau, A.W.K. Liu, S. Elhamri, and O.O. Cellek, Appl. Phys. Lett. 99, 251110 (2011).

    Article  Google Scholar 

  3. T. Schuler-Sandy, S. Myers, B. Klein, N. Gautam, P. Ahirwar, Z.B. Tian, T. Rotter, G. Balakrishnan, E. Plis, and S. Krishna, Appl. Phys. Lett. 101, 071111 (2012).

    Article  Google Scholar 

  4. H.S. Kim, O.O. Cellek, Z.Y. Lin, Z.Y. He, X.H. Zhao, S. Liu, H. Li, and Y.H. Zhang, Appl. Phys. Lett. 101, 161114 (2012).

    Article  Google Scholar 

  5. D. Zuo, P. Qiao, D. Wasserman, and S. Lien Chuang, Appl. Phys. Lett. 106, 071107 (2015).

    Article  Google Scholar 

  6. Z.Y. Lin, S. Liu, E.H. Steenbergen, and Y.H. Zhang, Appl. Phys. Lett. 107, 201107 (2015).

    Article  Google Scholar 

  7. M.R. Wood, K. Kanedy, F. Lopez, M. Weimer, J.F. Klem, S.D. Hawkins, E.A. Shaner, and J.K. Kim, J. Cryst. Growth 425, 110 (2015).

    Article  Google Scholar 

  8. J. Lu, E. Luna, T. Aoki, E.H. Steenbergen, Y.H. Zhang, and D.J. Smith, J. Appl. Phys. 119, 095702 (2016).

    Article  Google Scholar 

  9. D. Lackner, M. Steger, M.L.W. Thewalt, O.J. Pitts, Y.T. Cherng, S.P. Watkins, E. Plis, and S. Krishna, J. Appl. Phys. 111, 034507 (2012).

    Article  Google Scholar 

  10. E.H. Steenbergen, S. Elhamri, W.C. Mitchel, S. Mou, and G.J. Brown, Appl. Phys. Lett. 104, 011104 (2014).

    Article  Google Scholar 

  11. B.C. Connelly, E.H. Steenbergen, H.E. Smith, S. Elhamri, W.C. Mitchel, S. Mou, G.D. Metcalfe, G.J. Brown, and M. Wraback, Phys. Status Solidi (B) 253, 630 (2015).

  12. Y. Lin, D. Wang, D. Donetsky, G. Belenky, H. Hier, W.L. Sarney, and S.P. Svensson, J. Electron. Mater. 43, 3184 (2014).

    Article  Google Scholar 

  13. D.E. Sidor, G.R. Savich, and G.W. Wicks, J. Electron. Mater. 45, 4663 (2016).

    Article  Google Scholar 

  14. S.P. Svensson, F.J. Crowne, H.S. Hier, W.L. Sarney, W.A. Beck, Y. Lin, D. Donetsky, S. Suchalkin, and G. Belenky, Semicond. Sci. Technol. 30, 035018 (2015).

    Article  Google Scholar 

  15. S. Maimon and G.W. Wicks, Appl. Phys. Lett. 89, 151109 (2006).

    Article  Google Scholar 

  16. J.R. Meyer, C.A. Hoffman, F.J. Bartoli, D.A. Arnold, S. Sivananthan, and J.P. Faurie, Semicond. Sci. Technol. 8, 805 (1993).

    Article  Google Scholar 

  17. W.A. Beck and J.R. Anderson, J. Appl. Phys. 62, 541 (1987).

    Article  Google Scholar 

  18. Z. Dziuba and M. Gorska, J. Phys. III 2, 99 (1992).

    Google Scholar 

  19. J. Antoszewski, D.J. Seymour, L. Faraone, J.R. Meyer, and C.A. Hoffman, J. Electron. Mater. 24, 1255 (1995).

    Article  Google Scholar 

  20. N.C. Henry, A. Brown, D.B. Knorr, N. Baril, E. Nallon, J.L. Lenhart, M. Tidrow, and S. Bandara, Appl. Phys. Lett. 108, 011606 (2016).

    Article  Google Scholar 

  21. R.J. Egan, V.W.L. Chin, and T.L. Tansley, Solid State Commun. 93, 553 (1995).

    Article  Google Scholar 

  22. A.E. Brown, Application of Mobility Spectrum Analysis to Modern Multi-layered IR Device Material. Diss. (2016).

  23. U. Kraft, U. Zschieschang, F. Ante, D. Kälblein, C. Kamella, K. Amsharov, M. Jansen, K. Kern, E. Weber, and H. Klauk, J. Mater. Chem. 20, 6416 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Brown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, A.E., Baril, N., Zuo, D. et al. Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices. J. Electron. Mater. 46, 5367–5373 (2017). https://doi.org/10.1007/s11664-017-5621-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5621-7

Keywords

Navigation