Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Investigation of Electronic, Elastic and Vibrational Properties of an Interlanthanide Perovskite: PrYbO3

  • 215 Accesses

  • 5 Citations

Abstract

The structural, mechanical, electronic and lattice dynamical properties of the PrYbO3 compound from the ABO3-type perovskite family have been investigated by performing the first-principles density functional theory calculations using the generalized-gradient approximation (GGA) with corrected Coulomb interactions (GGA+U). Structural parameters, formation energies and phase transition pressures for the five possible phases of this compound have been calculated. Then, the spin-dependent electronic band structure and corresponding density of states (DOS) have been plotted. Also, the shear modulus, Young’s modulus, Poisson’s ratio, G/B ratio, hardness and anisotropy factors have been calculated to investigate mechanical behavior of this material. Furthermore, the phonon dispersion curves have also been plotted as corresponding phonon PDOS. According to our calculations, the orthorhombic phase of the five phases of PrYbO3 is the most stable one and exhibits a half-metallic character, which can therefore be a candidate for spintronic applications.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C.J. Rhodes, Sci. Prog. 97, 279 (2014).

  2. 2.

    J.F. Mitchell, D.N. Argyriou, A. Berger, K.E. Gray, R. Osborn, and U. Welp, J. Phys. Chem. B 105, 10731 (2001).

  3. 3.

    H.R. Wenk and A. Bulakh, Minerals: Their Constitution and Origin (New York: Cambridge University Press, 2004), pp. 1–646.

  4. 4.

    A.M. Glazer, Acta Cryst. A31, 756 (1975).

  5. 5.

    M.W. Lufaso and P.M. Woodward, Acta Cryst. B 57, 725 (2001).

  6. 6.

    Z.L. Wang and Z.C. Kang, Functional and Smart Materials (New York: Plenum Press, 1998), pp. 1–514.

  7. 7.

    F.S. Galasso, Perovskites and High T c Superconductors (New York: Gordon&Breach Science Publishers, 1990), pp. 1–294.

  8. 8.

    A.P. Jones, F. Wall, and C.T. Williams, Rare Earth Minerals: Chemistry, Origin and Ore Deposits (Netherlands: Springer, 1996), pp. 1–372.

  9. 9.

    S. Coh, T. Heeg, J.H. Haeni, M.D. Biegalski, J. Lettieri, L.F. Edge, K.E. O’Brien, M. Bernhagen, P. Reiche, R. Uecker, S. Trolier-McKinstry, D.G. Schlom, and D. Vanderbilt, Phys. Rev. B 82, 064101 (2010).

  10. 10.

    S. Saha, T.P. Sinha, and A. Mookerjee, Phys. Rev. B 62, 8828 (2000).

  11. 11.

    O. Auciello, J.F. Scott, and R. Ramesh, Phys. Today 51, 22 (1998).

  12. 12.

    N.A. Hill, J. Phys. Chem. B 104, 6694 (2000).

  13. 13.

    C. Li, K.C.K. Soh, and P. Wu, J. Alloys Compd. 372, 40 (2004).

  14. 14.

    K.K. Hansen, Mater. Res. Bull. 45, 1334 (2010).

  15. 15.

    J. Shi and L. Guo, Prog. Nat. Sci. 22, 592 (2012).

  16. 16.

    K. Ito, K. Tezuka, and Y. Hinatsu, J. Solid State Chem. 157, 173 (2001).

  17. 17.

    C. Artini, G.A. Costa, M.M. Carnasciali, and R. Masini, J. Alloys Compd. 494, 336 (2010).

  18. 18.

    S. Polizzi, S. Bucella, A. Speghini, F. Vetrone, R. Naccache, J.C. Boyer, and J.A. Capobianco, Chem. Mater. 16, 1330 (2004).

  19. 19.

    U. Griebner, V. Petrov, K. Petermann, and V. Peters, Opt. Express 12, 3125 (2004).

  20. 20.

    R.L. Moreira, A. Feteira, and A. Dias, J. Phys. Condens. Matter 17, 2775 (2005).

  21. 21.

    Y. Sharma, S. Sahoo, A.K. Mishra, P. Misra, S.P. Pavunny, A. Dwivedi, S.M. Sharma, and R.S. Katiyar, J. Appl. Phys. 117, 094101 (2015).

  22. 22.

    U. Berndt, D. Maier, and C. Keller, J. Solid State Chem. 13, 131 (1975).

  23. 23.

    J. Coutures and J.P. Coutures, J. Solid State Chem. 19, 29 (1976).

  24. 24.

    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, and I. Dabo, J. Phys. Condens. Matter 21, 395502 (2009).

  25. 25.

    J.J.U. Buch, G. Lalitha, T.K. Pathak, N.H. Vasoya, V.K. Lakhani, P.V. Reddy, R. Kumar, and K.B. Modi, J. Phys. D Appl. Phys. 41, 025406 (2008).

  26. 26.

    K.A. Pestka II, J.D. Maynard, A. Soukiassian, X.X. Xi, D.G. Schlom, Y. Le Page, M. Bernhagen, P. Reiche, and R. Uecker, Appl. Phys. Lett. 92, 111915 (2008).

  27. 27.

    K.A. Pestka II, E.S. Scott, and Y. Le Page, AIP Adv. 1, 032154 (2011).

  28. 28.

    C.W. Huang, W. Ren, V.C. Nguyen, Z. Chen, J. Wang, T. Sritharan, and L. Chen, Adv. Mater. 24, 4170 (2012).

  29. 29.

    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1994).

  30. 30.

    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

  31. 31.

    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

  32. 32.

    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

  33. 33.

    S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Phys. Rev. B 57, 1505 (1998).

  34. 34.

    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

  35. 35.

    A. Shigemi and T. Wada, Jpn. J. Appl. Phys. 43, 6793 (2004).

  36. 36.

    C.S. Barrett, L. Meyer, and J. Wasserman, J. Chem. Phys. 47, 592 (1967).

  37. 37.

    V. Goldschmidt, Naturwissenschaften 21, 477 (1926).

  38. 38.

    H. Kronmüller and S. Parkin, eds., Handbook of Magnetism and Advanced Magnetic Materials,, vol. 4 Novel Materials (Chichester: Wiley, 2007), pp. 1–1112.

  39. 39.

    A. Erkisi, G. Gokoglu, G. Surucu, R. Ellialtioglu, and E.K. Yildirim, Philos. Mag. 96, 2040 (2016).

  40. 40.

    R.D. Shannon, Acta Cryst. A32, 751 (1976).

  41. 41.

    H. Zhang, N. Li, K. Li, and D. Xue, Acta Cryst. B63, 812 (2007).

  42. 42.

    A. Erkisi, E.K. Yildirim, and G. Gokoglu, Int. J. Mod. Phys. B 28/29, 1450205 (2014).

  43. 43.

    Z. Szotek, W.M. Temmerman, A. Svane, L. Petit, P. Strange, G.M. Stocks, D. Kodderitzsch, W. Hergert, and H. Winter, J. Phys. Condens. Matter 16, S5587 (2004).

  44. 44.

    A. Abbad, W. Benstaali, H.A. Bentounes, S. Bentata, and Y. Benmalem, Solid State Commun. 228, 36 (2016).

  45. 45.

    B. Bouadjemi, S. Bentata, A. Abbad, W. Benstaali, and B. Bouhafs, Solid State Commun. 168, 6 (2013).

  46. 46.

    Z. Wu, E. Zhao, H. Xiang, X. Hao, X. Liu, and J. Meng, Phys. Rev. B 76, 054115 (2007).

  47. 47.

    W. Voigt, Lehrbuch der Kristallphysik [The textbook of crystal physics] (Leipzig: Teubner, 1928), pp. 1–962.

  48. 48.

    A. Reuss, J. Appl. Math. Mech. 9, 49 (1929).

  49. 49.

    R. Hill, Proc. Phys. Soc. A 65, 349 (1952).

  50. 50.

    J.B. Levine, S.H. Tolbert, and R.B. Kaner, Adv. Funct. Mater. 19, 3519 (2009).

  51. 51.

    M.T. Yeung, R. Mohammadi, and Richard B. Kaner, Annu. Rev. Mater. Res. 48, 465 (2016).

  52. 52.

    A. Senyshyn, H. Ehrenberg, L. Vasylechko, J.D. Gale, and U. Bismayer, J. Phys. Condens. Matter 17, 6217 (2005).

  53. 53.

    J. Haines, J.M. Leger, and G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001).

  54. 54.

    N. Frantsevich, F.F. Voronov, and S.A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: Naukova Dumka, 1983), pp. 60–180.

  55. 55.

    U.K. Chowdhury, Md.A. Rahman, Md.A. Rahman, M.T.H. Bhuiyan, and Md.L. Ali, Cogent Phys. 3, 1231361 (2016).

  56. 56.

    S.F. Pugh, Philos. Mag. Ser. 45, 823 (1954).

  57. 57.

    X.Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics 19, 1275 (2011).

  58. 58.

    S. Yamanaka, K. Kurosaki, T. Maekawa, T. Matsuda, S. Kobayashi, and M. Uno, J. Nucl. Mater. 344, 61 (2005).

  59. 59.

    T. Shishido, Y. Zheng, A. Saito, H. Horiuch, K. Kudou, S. Okada, and T. Fukuda, J. Alloys Compd. 260, 88 (1997).

  60. 60.

    S. Pathak, S.R. Kalidindi, B. Moser, C. Klemenz, and N. Orlovskaya, J. Eur. Ceram. Soc. 28, 2039 (2008).

  61. 61.

    H. Ledbetter and A. Migliori, J. Appl. Phys. 100, 063516 (2006).

  62. 62.

    J. Chang, G.P. Zhao, X.L. Zhou, K. Liu, and L.Y. Lu, J. Appl. Phys. 112, 083519 (2012).

  63. 63.

    A. Marmier, Z.A.D. Lethbridge, R.I. Walton, C.W. Smith, S.C. Parker, and K.E. Evans, Comput. Phys. Commun. 181, 2102 (2010).

  64. 64.

    A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).

  65. 65.

    S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987).

  66. 66.

    X. Gonze and J.P. Vigneron, Phys. Rev. B 39, 13120 (1989).

  67. 67.

    X. Gonze, D.C. Allan, and M.P. Teter, Phys. Rev. Lett. 68, 3603 (1992).

Download references

Author information

Correspondence to Cagil Kaderoglu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaderoglu, C., Surucu, G. & Erkisi, A. The Investigation of Electronic, Elastic and Vibrational Properties of an Interlanthanide Perovskite: PrYbO3 . Journal of Elec Materi 46, 5827–5836 (2017). https://doi.org/10.1007/s11664-017-5600-z

Download citation

Keywords

  • Perovskites
  • ab initio
  • elasticity
  • mechanical properties
  • phonon
  • band calculations
  • half metals