Skip to main content
Log in

A Comparative Study of AlGaN and InGaN Back-Barriers in Ultrathin-Barrier AlN/GaN Heterostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Investigations of the effects of back-barrier introduction on the two-dimensional electron gas (2DEG) of ultrathin-barrier AlN/GaN heterostructures with AlGaN and InGaN back-barriers are carried out using self-consistent solutions of 1-dimensional Schrödinger–Poisson equations. Inserted AlGaN and InGaN back-barriers are used to provide a good 2DEG confinement thanks to raising the conduction band edge of GaN buffer with respect to GaN channel layer. Therefore, in this paper the influence of these back-barrier layers on sheet carrier density, 2DEG confinement, and mobility are systematically and comparatively investigated. As a result of calculations, although sheet carrier density is found to decrease with InGaN back-barrier layer, it is not changed with AlGaN back-barrier layer for suggested optimise heterostructures. Obtained results can give some insights for further experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Gelmont, K. Kim, and M. Shur, J. Appl. Phys. 74, 1818 (1993).

    Article  Google Scholar 

  2. F. Medjdoub, J.-F. Carlin, M. Gonschorek, E. Feltin, M.A. Py, D. Ducatteau, C. Gaquière, N. Grandjean, and E. Kohn, in International Electron Devices Meeting (IEDM), (2006), pp. 1–4.

  3. K. Shinohara, D.C. Regan, Y. Tang, A.L. Corrion, D.F. Brown, J.C. Wong, J.F. Robinson, H.H. Fung, A. Schmitz, and T.C. Oh, I.E.E.E. Trans Electron Devices 60, 2982 (2013).

    Article  Google Scholar 

  4. R. Gaska, J.W. Yang, A. Osinsky, Q. Chen, M.A. Khan, A.O. Orlov, G.L. Snider, and M.S. Shur, Appl. Phys. Lett. 72, 707 (1998).

    Article  Google Scholar 

  5. E. Bahat-Treidel, O. Hilt, F. Brunner, J. Wurfl, and G. Trankle, IEEE Trans. Electron Devices 55, 3354 (2008).

    Article  Google Scholar 

  6. T. Palacios, A. Chakrabort, S. Heikman, S. Keller, S.P. DenBaars, and U.K. Mishra, IEEE Electron Device Lett. 27, 13 (2006).

    Article  Google Scholar 

  7. F. Medjdoub, M. Zegaoui, B. Grimbert, N. Rolland, and P.-A. Rolland, Appl. Phys. Exp. 4, 124101 (2011).

    Article  Google Scholar 

  8. O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, A.J. Sierakowski, W.J. Schaff, L.F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, J. Appl. Phys. 87, 334 (2000).

    Article  Google Scholar 

  9. A. Dadgar, F. Schulze, J. Blasing, A. Diez, A. Krost, M. Neuburger, E. Kohn, I. Daumiller, and M. Kunze, Appl. Phys. Lett. 85, 5400 (2004).

    Article  Google Scholar 

  10. Y. Cao and D. Jena, Appl. Phys. Lett. 90, 182112 (2007).

    Article  Google Scholar 

  11. A.M. Dabiran, A.M. Wowchak, A. Osinsky, J. Xie, B. Hertog, B. Cui, D.C. Look, and P.P. Chow, Appl. Phys. Lett. 93, 082111 (2008).

    Article  Google Scholar 

  12. F. Medjdoub, M. Zegaoui, N. Rolland, and P.A. Rolland, Appl. Phys. Lett. 98, 223502 (2011).

    Article  Google Scholar 

  13. I.P. Smorchkova, L. Chen, T. Mates, L. Shen, S. Heikman, B. Moran, S. Keller, S.P. DenBaars, J.S. Speck, and U.K. Mishra, J. Appl. Phys. 90, 5196 (2001).

    Article  Google Scholar 

  14. F. Medjdoub, M. Zegaoui, A. Linge, B. Grimbert, R. Silvestri, M. Meneghini, G. Meneghesso, and E. Zanoni, Solid State Electron. 113, 49 (2015).

    Article  Google Scholar 

  15. D.S. Lee, X. Gao, S. Guo, and T. Palacios, IEEE Electron Device Lett. 32, 617 (2011).

    Article  Google Scholar 

  16. D.S. Lee, X. Gao, S. Guo, D. Kopp, P. Fay, and T. Palacios, IEEE Electron Device Lett. 32, 1525 (2011).

    Article  Google Scholar 

  17. S. Rennesson, B. Damilano, P. Vennegues, S. Chenot, and Y. Cordier, Phys. Status Solidi A 210, 480 (2013).

    Article  Google Scholar 

  18. A. Kamath, T. Patil, R. Adari, I. Bhattacharya, S. Ganguly, R.W. Aldhaheri, M.A. Hussain, and D. Saha, IEEE Electron Device Lett. 33, 1690 (2012).

    Article  Google Scholar 

  19. X. Kong, K. Wei, G. Liu, X. Liu, C. Wang, and X. Wang, Appl. Phys. Exp. 6, 051201 (2013).

    Article  Google Scholar 

  20. L. Wang, W.D. Hu, X.S. Chen, and W. Lu, J. Appl. Phys. 108, 054501 (2010).

    Article  Google Scholar 

  21. M. Auf der Maur, G. Penazzi, G. Romano, F. Sacconi, A. Pecchia, and A. Di Carlo, IEEE Trans. Electron Devices 58, 1425 (2011).

    Article  Google Scholar 

  22. M. Auf der Maur, M. Povolotskyi, F. Sacconi, A. Pecchia, G. Romano, G. Penazzi, and A. Di Carlo, Opt. Quant. Electron 40, 1077 (2008).

  23. M. Povolotskyi and A. Di Carlo, J. Appl. Phys. 100, 063514 (2006).

    Article  Google Scholar 

  24. K.S. Lee, D.H. Yoon, S.B. Bae, M.R. Park, and G.H. Kim, ETRI J. 24, 270 (2002).

    Article  Google Scholar 

  25. I. Vurgaftman and J.R. Meyer, J. Appl. Phys. 94, 3675 (2003).

    Article  Google Scholar 

  26. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).

    Article  Google Scholar 

  27. A.F. Wright, J. Appl. Phys. 82, 2833 (1997).

    Article  Google Scholar 

  28. A. Polian, M. Grimsditch, and I. Grzegory, J. Appl. Phys. 79, 3343 (1996).

    Article  Google Scholar 

  29. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L.F. Eastman, J. Phys. Condens. Matter. 14, 3399 (2002).

    Article  Google Scholar 

  30. S.L. Chuang and C. Chang, Phys. Rev. B Condens. Matter. 54, 2491 (1996).

    Article  Google Scholar 

  31. F. Sacconi, M.A. Maur, and A.D. Carlo, IEEE Trans. Electron Devices 59, 2979 (2012).

    Article  Google Scholar 

  32. N. Okamoto, K. Hoshino, N. Hara, M. Takikawa, and Y. Arakawa, J. Cryst. Growth 272, 278 (2004).

    Article  Google Scholar 

  33. K.H. Lee, P.C. Chang, S.J. Chang, Y.K. Su, and C.L. Yu, Appl. Phys. Lett. 96, 212105 (2007).

    Article  Google Scholar 

  34. K. Elibol, G. Atmaca, P. Tasli, and S.B. Lisesivdin, Solid State Commun. 162, 8 (2013).

    Article  Google Scholar 

  35. G. Atmaca, P. Narin, S.B. Lisesivdin, M. Kasap, and B. Sarikavak-Lisesivdin, Philos. Mag. 95, 79 (2015).

    Article  Google Scholar 

  36. S.B. Lisesivdin and E. Ozbay, Optoelectron. Adv. Mater. Rap. Comm. 3, 904 (2009).

    Google Scholar 

  37. B. Sarikavak-Lisesivdin, Philos. Mag. 93, 1 (2013).

    Article  Google Scholar 

  38. S.B. Lisesivdin, S. Acar, M. Kasap, S. Ozcelik, S. Gokden, and E. Ozbay, Semicond. Sci. Technol. 22, 543 (2007).

    Article  Google Scholar 

  39. G.Y. Zhang, Y.Z. Tong, Z.J. Yang, S.X. Jin, J. Li, and Z.Z. Gan, Appl. Phys. Lett. 71, 3376 (1997).

    Article  Google Scholar 

  40. S. Gokden, Phys. Status Solidi A 2, 369 (2003).

    Article  Google Scholar 

  41. S. Gokden, A. Ilgaz, N. Balkan, and S. Mazzucato, Phys. E Low Dimens. Syst. Nanostruct. 25, 86 (2004).

    Article  Google Scholar 

  42. H. Bach and D. Krause, Thin Films on Glass (Berlin: Springer, 2003), p. 153.

    Book  Google Scholar 

  43. Y. Zhang, X. Zhou, S. Xu, J. Zhang, J. Zhang, and Y. Hao, Appl. Phys. Exp. 6, 061003 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Atmaca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

All Abbas, J.M., Atmaca, G., Narin, P. et al. A Comparative Study of AlGaN and InGaN Back-Barriers in Ultrathin-Barrier AlN/GaN Heterostructures. J. Electron. Mater. 46, 5278–5286 (2017). https://doi.org/10.1007/s11664-017-5540-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5540-7

Keywords

Navigation