Journal of Electronic Materials

, Volume 46, Issue 8, pp 5201–5208 | Cite as

Enhancing Low-Temperature and Pressureless Sintering of Micron Silver Paste Based on an Ether-Type Solvent



Micron silver paste enables a low-temperature and pressureless sintering process by using an ether-type solvent CELTOL-IA (C x H y O z , x > 10, boiling point of approximately 200°C) for the die attachment of high-powered devices. The conductive patterns formed by the silver paste had a low electrical resistivity of 8.45 μΩ cm at 180°C. The paste also achieved a high bonding strength above 30 MPa at 180°C without the assistance of pressures. These superior performance indicators result from the favorable removal of the solvent, its thermal behavior, and its good wetting on the silver layer. The results suggest that the micron silver paste with a suitable␣solvent can promote the further spreading of next-generation power devices owing to its marked cost advantage and excellent performance.


Micron silver paste electronic packaging low-temperature and pressureless sintering solvent wetting behaviors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Thank Youji Suzuki and Yasuyuki Akai coming from Daicel Corporation in Japan for providing the solvents and discussing their usage in experimental. This work was partly supported by the COI Stream Project, and Grant-in-Aid for Scientific Research (Kaken S, 24226017). H. Zhang acknowledges the financial support from China Scholarship Council for his PhD research in Osaka University.


  1. 1.
    S. Ryu, B. Hull, S. Dhar, L. Cheng, Q. Zhang, J. Richmond, M. Das, A. Agarwal, J. Palmour, A. Lelis, B. Geil, and C. Scozzie, Mater. Sci. Forum 645, 969 (2010).CrossRefGoogle Scholar
  2. 2.
    J. Millan, in Semiconductor Conference (CAS) (2012), p. 57.Google Scholar
  3. 3.
    H. Chin, K. Cheong, and A. Ismail, Metall. Mater. Trans. B 41, 824 (2010).CrossRefGoogle Scholar
  4. 4.
    K.N. Tu and K. Zeng, Mater. Sci. Eng. R Rep. 34, 1 (2001).CrossRefGoogle Scholar
  5. 5.
    M. Abtew and G. Selvaduray, Mater. Sci. Eng. R Rep. 27, 95 (2000).CrossRefGoogle Scholar
  6. 6.
    V.R. Manikam and K.Y. Cheong, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 457 (2011).CrossRefGoogle Scholar
  7. 7.
    K.S. Siow, J. Electron. Mater. 43, 947 (2014).CrossRefGoogle Scholar
  8. 8.
    D. Wakuda, K.S. Kim, and K. Suganuma, Scr. Mater. 59, 649 (2008).CrossRefGoogle Scholar
  9. 9.
    J. Yan, G. Zou, A.P. Wu, J. Ren, J. Yan, A. Hu, and Y. Zhou, Scr. Mater. 66, 582 (2012).CrossRefGoogle Scholar
  10. 10.
    T. Wang, X. Chen, G.-Q. Lu, and G.-Y. Lei, J. Electron. Mater. 36, 1333 (2007).CrossRefGoogle Scholar
  11. 11.
    T. Wang, M. Zhao, X. Chen, G.Q. Lu, K. Ngo, and S. Luo, J. Electron. Mater. 41, 2543 (2012).CrossRefGoogle Scholar
  12. 12.
    C. Marambio-Jones and E.M.V. Hoek, J. Nanopart. Res. 12, 1531 (2010).CrossRefGoogle Scholar
  13. 13.
    M. Kuramoto, S. Ogawa, M. Niwa, K. Keun-Soo, and K. Suganuma, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 653 (2011).CrossRefGoogle Scholar
  14. 14.
    K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, and M. Nogi, Microelectron. Reliab. 52, 375 (2012).CrossRefGoogle Scholar
  15. 15.
    I. Kim and S. Chun, J. Electron. Mater. 40, 1977 (2011).CrossRefGoogle Scholar
  16. 16.
    J. Jiu, H. Zhang, S. Nagao, T. Sugahara, N. Kagami, Y. Suzuki, Y. Akai, and K. Suganuma, J. Electron. Mater. 51, 3422 (2016).Google Scholar
  17. 17.
    S. Sakamoto, S. Nagao, and K. Suganuma, J. Mater. Sci. Mater. Electron. 24, 2593 (2013).CrossRefGoogle Scholar
  18. 18.
    H. Nishikawa, X. Liu, X. Wang, A. Fujita, N. Kamada, and M. Saito, Mater. Lett. 161, 231 (2015).CrossRefGoogle Scholar
  19. 19.
    E. Ide, S. Angata, A. Hirose, and K.F. Kobayashi, Acta Mater. 53, 2385 (2005).CrossRefGoogle Scholar
  20. 20.
    M.N. Rahaman, Ceramic Processing and Sintering (New York: Taylor & Francis, 2003), pp. 235–412.Google Scholar
  21. 21.
    D.J. Shanefield, Organic Additives and Ceramic Processing: With Applications in Powder Metallurgy, Ink, and Paint (New York: Springer, 2013), pp. 50–82.Google Scholar
  22. 22.
    M. Nosonovsky and B. Bhushan, Phys. Chem. Chem. Phys. 10, 2137 (2008).CrossRefGoogle Scholar
  23. 23.
    R.B. Thompson, J.R. MacDonald, and P. Chen, Phys. Rev. E 78, 030801 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Department of Adaptive Machine Systems, Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.The Institute of Scientific and Industrial Research (ISIR)Osaka UniversitySuitaJapan

Personalised recommendations