Skip to main content

Advertisement

Log in

Estimating Seebeck Coefficient of a p-Type High Temperature Thermoelectric Material Using Bee Algorithm Multi-layer Perception

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric generators (TEGs) convert heat into electrical energy. These energy-conversion systems do not involve any moving parts and are made of thermoelectric (TE) elements connected electrically in a series and thermally in parallel; however, they are currently not suitable for use in regular operations due to their low efficiency levels. In order to produce high-efficiency TEGs, there is a need for highly heat-resistant thermoelectric materials (TEMs) with an improved figure of merit (ZT). Production and test methods used for TEMs today are highly expensive. This study attempts to estimate the Seebeck coefficient of TEMs by using the values of existing materials in the literature. The estimation is made within an artificial neural network (ANN) based on the amount of doping and production methods. Results of the estimations show that the Seebeck coefficient can approximate the real values with an average accuracy of 94.4%. In addition, ANN has detected that any change in production methods is followed by a change in the Seebeck coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Baker, P. Vuppuluri, L. Shi, and M. Hall, J. Electron. Mater. 41, 1290 (2012).

    Article  Google Scholar 

  2. G. Min and D.M. Rowe, IEEE Trans. Energy Convers. 22, 528 (2007).

    Article  Google Scholar 

  3. V. Zlatic and A. Hewson, New Materials for Thermoelectric Applications: Theory and Experiment (Dordrecht: Springer, 2013), p. viii.

    Book  Google Scholar 

  4. A. Duffy and J. Morriss, Internal Combustion Engine Fundamentals, 1st ed. (Singapore: McGraw-Hill, 1988), pp. 1–7.

    Google Scholar 

  5. F.P. Zhang, X. Zhang, Q.M. Lu, J.X. Zhang, Y.Q. Liu, and G.Z. Zhang, Solid State Ion. 201, 1 (2011).

    Article  Google Scholar 

  6. Y. Wang, Y. Sui, J. Cheng, X. Wang, and W. Su, J. Alloys Compd. 477, 817 (2009).

    Article  Google Scholar 

  7. H. Su, Y. Jiang, X. Lan, X. Liu, H. Zhong, and D. Yu, Phys. Status Solidi A 208, 147 (2011).

    Article  Google Scholar 

  8. D. Wang, L. Chen, Q. Yao, and J. Li, Solid State Commun. 129, 615 (2004).

    Article  Google Scholar 

  9. Y. Song and C.-W. Nan, Phys. B Condens. Matter 406, 2919 (2011).

    Article  Google Scholar 

  10. F.P. Zhang, Q.M. Lu, and J.X. Zhang, J. Alloys Compd. 484, 550 (2009).

    Article  Google Scholar 

  11. Y. Zheng, H. Zhou, T. Ma, G. Zuo, H. Li, T. Su, C. Wu, H. Huang, D. Wang, and L. Yin, Bull. Mater. Sci. 37, 963 (2014).

    Article  Google Scholar 

  12. K. Park and G.W. Lee, Energy 60, 87 (2013).

    Article  Google Scholar 

  13. C.-H. Lim, S.-M. Choi, W.-S. Seo, and H.-H. Park, J. Electron. Mater. 41, 1247 (2011).

    Article  Google Scholar 

  14. M. Gunes, M. Parlak, and M. Ozenbas, Meas. Sci. Technol. 25, 055901 (2014).

    Article  Google Scholar 

  15. K. Gurney, An Introduction to Neural Networks, 1st ed. (London: CRC Press, 1997), pp. 13–16.

    Book  Google Scholar 

  16. D. Graupe, Principles of Artificial Neural Networks, 3rd ed. (Singapore: World Scientific, 2013), p. 1.

    Google Scholar 

  17. N. Caglar, Constr. Build. Mater. 23, 3225 (2009).

    Article  Google Scholar 

  18. D.T. Pham, E. Koc, A. Ghanbarzadeh, and S. Otri, in Proceedings of 5th International Symposium on Intelligent Manufacturing Systems (2006), pp. 38–46.

  19. N. Derebasi, M. Eltez, F. Guldiken, A. Sever, K. Kallis, and H. Kilic, J. Electron. Mater. 44, 2068 (2015).

    Article  Google Scholar 

  20. B. Ciylan, Electron. Elektrotech. 116, 63 (2011).

    Google Scholar 

  21. R. Quan, X. Tang, S. Quan, and L. Huang, J. Electron. Mater. 42, 1469 (2012).

    Article  Google Scholar 

  22. A. Goudarzi, A. Mozaffari, P. Samadian, A. Rezania, and L.A. Rosendahl, Meccanica 49, 1211 (2014).

    Article  Google Scholar 

  23. Values of Ca3Co4O9-based p-type thermoelectric materials in the literature. http://web.karabuk.edu.tr/fatihuysal/2.html. Accessed 25 Dec 2016.

  24. T. Ekemen Keskin, M. Düğenci, and F. Kaçaroğlu, Environ. Earth Sci. 73, 5333 (2014).

    Article  Google Scholar 

  25. S.J. Russel and P. Norvig, Artificial Intelligence A Modern Approach, 3rd ed. (New Jersey: Pearson, 2010), pp. 731–732.

    Google Scholar 

  26. R.J. Schalkoff, Artificial Neural Networks (Singapore: McGraw-Hill, 1997), pp. 109–111.

    Google Scholar 

  27. F. Laurene, Fundamentals of Neural Networks, 1st ed. (New Jersey: Prentice Hall, 1994), pp. 291–306.

    Google Scholar 

  28. H.Q. Liu, X.B. Zhao, T.J. Zhu, Y. Song, and F.P. Wang, Curr. Appl. Phys. 9, 409 (2009).

    Article  Google Scholar 

  29. Performances of estimations made after the random comparison of training and test data. http://web.karabuk. edu.tr/fatihuysal/1.html. Accessed 25 Dec 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Uysal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Supplementary material 2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uysal, F., Kilinc, E., Kurt, H. et al. Estimating Seebeck Coefficient of a p-Type High Temperature Thermoelectric Material Using Bee Algorithm Multi-layer Perception. J. Electron. Mater. 46, 4931–4938 (2017). https://doi.org/10.1007/s11664-017-5497-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5497-6

Keywords

Navigation