Skip to main content

Advertisement

Log in

One-Dimensional Metal-Oxide Nanostructures for Solar Photocatalytic Water-Splitting

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Because of their unique physical and chemical properties, one-dimensional (1-D) metal-oxide nanostructures have been extensively applied in the areas of gas sensors, electrochromic devices, nanogenerators, and so on. Solar water-splitting has attracted extensive research interest because hydrogen generated from solar-driven water splitting is a clean, sustainable, and abundant energy source that not only solves the energy crisis, but also protects the environment. In this comprehensive review, the main synthesis methods, properties, and especially prominent applications in solar water splitting of 1-D metal-oxides, including titanium dioxide (TiO2), zinc oxide (ZnO), tungsten trioxide (WO3), iron oxide (Fe2O3), and copper oxide (CuO) are fully discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tachibana, L. Vayssieres, and J. Durrant, Nat. Photonics 6, 511 (2012).

    Article  Google Scholar 

  2. N. Lewis and D. Nocera, Proc. Natl. Acad. Sci. 103, 15729 (2006).

    Article  Google Scholar 

  3. M. Kanan and D. Nocera, Science 321, 1072 (2008).

    Article  Google Scholar 

  4. M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, Org. Electron. 10, 932 (2009).

    Article  Google Scholar 

  5. S. Boettcher, E. Warren, M. Putnam, E. Santori, D. Turner-Evans, M. Kelzenberg, M. Walter, J.R. McKone, B. Brunschwig, and H. Atwater, J. Am. Chem. Soc. 133, 1216 (2011).

    Article  Google Scholar 

  6. X. Michalet, F. Pinaud, L. Bentolila, J. Tsay, S. Doose, J. Li, G. Sundaresan, A. Wu, S. Gambhir, and S. Weiss, Science 307, 538 (2005).

    Article  Google Scholar 

  7. G. Wang, Y. Ling, H. Wang, L.X. Hong, and Y. Li, J. Photochem. Photobiol., B 19, 35 (2014).

    Article  Google Scholar 

  8. A. Fujishima, K. Honda, and B. Chem, Soc. Jpn. 44, 1148 (1971).

    Article  Google Scholar 

  9. J. Lee, M. Orilall, S. Warren, M. Kamperman, F. DiSalvo, and U. Wiesner, Nat. Mater. 7, 222 (2008).

    Article  Google Scholar 

  10. H. Bolink, E. Coronado, J. Orozco, and M. Sessolo, Adv. Mater. 21, 79 (2009).

    Article  Google Scholar 

  11. A. Emeline, G. Kataeva, A. Panasuk, V. Ryabchuk, N. Sheremetyeva, and N. Serpone, J. Phys. Chem. 109, 5175 (2005).

    Article  Google Scholar 

  12. G. Rignanese, J. Phys.: Condens. Matter 17, 357 (2005).

    Google Scholar 

  13. K. Chen, A. Bell, and E. Iglesia, J. Catal. 209, 35 (2002).

    Article  Google Scholar 

  14. G. Mavrou, S. Galata, P. Tsipas, A. Sotiropoulos, Y. Panayiotatos, A. Dimoulas, E. Evangelou, J. Seo, and C. Dieker, J. Appl. Phys. 103, 4506 (2008).

    Article  Google Scholar 

  15. R. Devan, R. Patil, J. Lin, and Y. Ma, Adv. Funct. Mater. 22, 3326 (2012).

    Article  Google Scholar 

  16. A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253 (2009).

    Article  Google Scholar 

  17. X. Chen, S. Shen, L. Guo, and S. Mao, Chem. Rev. 110, 6503 (2010).

    Article  Google Scholar 

  18. M. Walter, E. Warren, J. McKone, S. Boettcher, Q. Mi, E. Santori, and N. Lewis, Chem. Rev. 110, 6446 (2010).

    Article  Google Scholar 

  19. D. Bavykin, V. Parmon, A. Lapkin, and F. Walsh, J. Mater. Chem. A 14, 3370 (2004).

    Article  Google Scholar 

  20. G. Mor, K. Shankar, M. Paulose, O. Varghese, and C. Grimes, Nano Lett. 6, 215 (2006).

    Article  Google Scholar 

  21. G. Mor, O. Varghese, M. Paulose, K. Shankar, and C. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011 (2006).

    Article  Google Scholar 

  22. G. Chen, C. Lee, H. Niu, W. Huang, R. Jann, and T. Schütte, Thin Solid Films 516, 8473 (2008).

    Article  Google Scholar 

  23. M. Afifi, M. Abdel-Aziz, I. Yahia, M. Fadel, and L. Wahab, J. Alloy. Compd. 455, 92 (2008).

    Article  Google Scholar 

  24. A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, Adv. Mater. 15, 997 (2003).

    Article  Google Scholar 

  25. H. Senoh, Z. Siroma, N. Fujiwara, and K. Yasuda, J. Power Sources 185, 1 (2008).

    Article  Google Scholar 

  26. S. Shi, Y. Zou, X. Cui, J. Xu, Y. Wang, G. Wang, G. Yang, J. Xu, T. Wang, and Z. Gao, CrystEngComm 12, 2122 (2010).

    Article  Google Scholar 

  27. J. Piekoszewski, A. Krajewski, F. Prokert, J. Senkara, J. Stanisławski, L. Waliś, Z. Werner, and W. Włosiński, Vacuum 70, 307 (2003).

    Article  Google Scholar 

  28. A. Wolcott, W. Smith, T. Kuykendall, Y. Zhao, and J. Zhang, Small 5, 104 (2009).

    Article  Google Scholar 

  29. M. Paulose, K. Shankar, S. Yoriya, H. Prakasam, O. Varghese, G. Mor, T. Latempa, A. Fitzgerald, and C. Grimes, J. Phys. Chem. B 110, 16179 (2006).

    Article  Google Scholar 

  30. A. Wolcott, W. Smith, T. Kuykendall, Y. Zhao, and J. Zhang, Adv. Funct. Mater. 19, 1849 (2009).

    Article  Google Scholar 

  31. M. Seo, M. Yuasa, T. Kida, J. Huh, K. Shimanoe, and N. Yamazoe, Sens. Actuators B Chem. 137, 513 (2009).

    Article  Google Scholar 

  32. A. Ghicov, H. Tsuchiya, R. Hahn, J. Macak, A. Muñoz, and P. Schmuki, Electrochem. Commun. 8, 528 (2006).

    Article  Google Scholar 

  33. S. Berger, A. Ghicov, Y. Nah, and P. Schmuki, Langmuir 25, 4841 (2009).

    Article  Google Scholar 

  34. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. Fitzmorris, C. Wang, J. Zhang, and Y. Li, Nano Lett. 11, 3026 (2011).

    Article  Google Scholar 

  35. H. Kim and S. Kang, Bull. Korean Chem. Soc. 34, 2067 (2013).

    Article  Google Scholar 

  36. S.Y. Noh, K. Sun, C. Choi, M. Niu, M. Yang, K. Xu, S. Jin, and D. Wang, Nano Energy 2, 351 (2013).

    Article  Google Scholar 

  37. Y. Lin, G. Yuan, R. Liu, S. Zhou, S. Sheehan, and D. Wang, Chem. Phys. Lett. 507, 209 (2011).

    Article  Google Scholar 

  38. A. Fujishima, Nature 238, 37 (1972).

    Article  Google Scholar 

  39. R. Rocheleau and E. Miller, Int. J. Hydrogen Energy 22, 771 (1997).

    Article  Google Scholar 

  40. Y. Pu, G. Wang, K. Chang, Y. Ling, Y. Lin, B. Fitzmorris, C. Liu, X. Lu, Y. Tong, and J. Zhang, Nano Lett. 13, 3817 (2013).

    Article  Google Scholar 

  41. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. Cronin, Nano Lett. 11, 1111 (2011).

    Article  Google Scholar 

  42. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, and J. He, Nanoscale 5, 8326 (2013).

    Article  Google Scholar 

  43. T. Kong, Y. Chen, Y. Ye, K. Zhang, Z. Wang, and X. Wang, Sens. Actuators B Chem. 138, 344 (2009).

    Article  Google Scholar 

  44. A. Qurashi, N. Tabet, M. Faiz, and T. Yamzaki, Nanoscale Res. Lett. 4, 948 (2009).

    Article  Google Scholar 

  45. Y. Masuda, T. Ohji, and K. Kato, Tin oxide nanosheet assembly for hydrophobic/hydrophilic coating and cancer sensing. ACS Appl. Mater. Interfaces. 4, 1666 (2012).

    Article  Google Scholar 

  46. O. Lupan, T. Pauporté, T. Le Bahers, B. Viana, and I. Ciofini, Adv. Funct. Mater. 21, 3564 (2011).

    Article  Google Scholar 

  47. W. Wang, B. Zeng, J. Yang, B. Poudel, J. Huang, M. Naughton, and Z. Ren, Adv. Mater. 18, 3275 (2006).

    Article  Google Scholar 

  48. H. Zeng, X. Xu, Y. Bando, U. Gautam, T. Zhai, X. Fang, B. Liu, and D. Golberg, Adv. Funct. Mater. 19, 3165 (2009).

    Article  Google Scholar 

  49. L. Vayssieres, Adv. Mater. 15, 464 (2003).

    Article  Google Scholar 

  50. M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

    Article  Google Scholar 

  51. G. Shen, Y. Bando, B. Liu, D. Golberg, and C. Lee, Adv. Funct. Mater. 16, 410 (2006).

    Article  Google Scholar 

  52. U. Gautam, L. Panchakarla, B. Dierre, X. Fang, Y. Bando, T. Sekiguchi, A. Govindaraj, D. Golberg, and C. Rao, Adv. Funct. Mater. 19, 131 (2009).

    Article  Google Scholar 

  53. A. Wei, X.W. Sun, C. Xu, Z. Dong, M. Yu, and W. Huang, Appl. Phys. Lett. 88, 213102 (2006).

    Article  Google Scholar 

  54. Y. Tseng, C. Huang, H. Cheng, I. Lin, K. Liu, and I. Chen, Adv. Funct. Mater. 13, 811 (2003).

    Article  Google Scholar 

  55. U. Manzoor and D. Kim, Scripta Mater. 54, 807 (2006).

    Article  Google Scholar 

  56. Y. Leung, A. Djurišić, J. Gao, M. Xie, Z. Wei, S. Xu, and W. Chan, Chem. Phys. Lett. 394, 452 (2004).

    Article  Google Scholar 

  57. C. Lao, P. Gao, R. Yang, Y. Zhang, Y. Dai, and Z. Wang, Chem. Phys. Lett. 417, 358 (2006).

    Article  Google Scholar 

  58. C. Xu and X. Sun, Appl. Phys. Lett. 83, 3806 (2003).

    Article  Google Scholar 

  59. Y. Zhu, H. Zhang, X. Sun, S. Feng, J. Xu, Q. Zhao, B. Xiang, R. Wang, and D. Yu, Appl. Phys. Lett. 83, 144 (2003).

    Article  Google Scholar 

  60. Y. Xu, H. Rao, X. Wang, H. Chen, D. Kuang, and C. Su, J. Mater. Chem. A 4, 5124 (2016).

    Article  Google Scholar 

  61. X. Wang, Y. Ding, C. And, and L. Zhong, J. Phys. Chem. B 108, 8773 (2004).

    Article  Google Scholar 

  62. S. Minne, S. Manalis, and C. Quate, Appl. Phys. Lett. 67, 3918 (1995).

    Article  Google Scholar 

  63. L. Guo, Y. Ji, H. Xu, P. Simon, and Z. Wu, J. Am. Chem. Soc. 124, 14864 (2002).

    Article  Google Scholar 

  64. C. Liu, J. Zapien, Y. Yao, X. Meng, C. Lee, S. Fan, Y. Lifshitz, and S. Lee, Adv. Mater. 15, 838 (2003).

    Article  Google Scholar 

  65. L. Vayssieres, K. Keis, A. Anders Hagfeldt, and S. Lindquist, Chem. Mater. 13, 4395 (2001).

    Article  Google Scholar 

  66. S. Nandi, S. Chakraborty, M. Bera, and C. Maiti, Bull. Mater. Sci. 30, 247 (2007).

    Article  Google Scholar 

  67. Y. Ding, X. Kong, and Z. Wang, Phys. Rev. B 70, 235408 (2004).

    Article  Google Scholar 

  68. Y. Koh, M. Lin, C. Tan, Y. Foo, and K. Loh, J. Phys. Chem. B 108, 11419 (2004).

    Article  Google Scholar 

  69. H. Lee, S. Shin, K. Nam, J. Nah, and M. Lee, J. Mater. Chem. A 4, 3223 (2016).

    Article  Google Scholar 

  70. Y. Ma, C. Lin, C. Yeh, and R. Huang, J. Vac. Sci. Technol., B 23, 2141 (2005).

    Article  Google Scholar 

  71. P. Woodward, A. Sleight, and T. Vogt, J. Solid State Chem. 131, 9 (1997).

    Article  Google Scholar 

  72. W. Hu, Y. Zhu, W. Hsu, B. Chang, M. Terrones, N. Grobert, H. Terrones, J. Hare, H. Kroto, and D. Walton, Appl. Phys. A 70, 231 (2000).

    Article  Google Scholar 

  73. H. Choi, Y. Jung, and D. Kim, J. Am. Ceram. Soc. 88, 1684 (2005).

    Article  Google Scholar 

  74. R. Hu, H. Wu, and K. Hong, J. Cryst. Growth 306, 395 (2007).

    Article  Google Scholar 

  75. M. Zumer, V. Nemanicˇ, B. Zajec, M. Wang, J. Wang, Y. Liu, and L. Peng, J. Phys. Chem. C 112, 5250 (2008).

    Article  Google Scholar 

  76. Y. Zhao, Y. Li, I. Ahmad, D. McCartney, Y. Zhu, and W. Hu, Appl. Phys. Lett. 89, 133116 (2006).

    Article  Google Scholar 

  77. T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, and D. Golberg, Adv. Funct. Mater. 20, 4233 (2010).

    Article  Google Scholar 

  78. K. Liu, D.T. Foord, and L. Scipioni, Nanotechnology 16, 10 (2004).

    Article  Google Scholar 

  79. G. Gu, B. Zheng, W. Han, S. Roth, and J. Liu, Nano Lett. 2, 849 (2002).

    Article  Google Scholar 

  80. C. Chen, S. Wang, R. Ko, Y. Kuo, K. Uang, T. Chen, B. Liou, and H. Tsai, Nanotechnology 17, 217 (2005).

    Article  Google Scholar 

  81. J. Liu, Y. Zhao, and Z. Zhang, J. Phys.: Condens. Matter 15, L453 (2003).

    Google Scholar 

  82. J. Zhou, L. Gong, S. Deng, J. Chen, J. She, N. Xu, R. Yang, and Z. Wang, Appl. Phys. Lett. 87, 223108 (2005).

    Article  Google Scholar 

  83. P. Rao, L. Cai, C. Liu, I. Cho, C. Lee, J. Weisse, P. Yang, and X. Zheng, Nano Lett. 14, 1099 (2014).

    Article  Google Scholar 

  84. Y. Hu, A. Kleiman-Shwarsctein, A. Forman, D. Hazen, J. Park, and E. McFarland, Chem. Mater. 20, 3803 (2008).

    Article  Google Scholar 

  85. I. Cesar, A. Kay, J.A. Gonzalez Martinez, and M. Grätzel, J. Am. Chem. Soc. 128, 4582 (2006).

    Article  Google Scholar 

  86. J. Turner, M. Hendewerk, J. Parmeter, D. Neiman, and G. Somorjai, J. Electrochem. Soc. 131, 1777 (1984).

    Article  Google Scholar 

  87. A. Murphy, P. Barnes, L. Randeniya, I. Plumb, I. Grey, M. Horne, and J. Glasscock, Int. J. Hydrogen Energy 31, 1999 (2006).

    Article  Google Scholar 

  88. B. Chernomordik, H. Russell, U. Cvelbar, J. Jasinski, V. Kumar, T. Deutsch, and M. Sunkara, Nanotechnology 23, 194009 (2012).

    Article  Google Scholar 

  89. Y. Qiu, K. Yan, H. Deng, and S. Yang, Nano Lett. 12, 407 (2012).

    Article  Google Scholar 

  90. A. Paracchino, N. Mathews, T. Hisatomi, M. Stefik, S. Tilley, and M. Grätzel, Energy Environ. Sci. 5, 8673 (2012).

    Article  Google Scholar 

  91. S. Warren and E. Thimsen, Energy Environ. Sci. 5, 5133 (2012).

    Article  Google Scholar 

  92. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen, Nat. Mater. 10, 456 (2011).

    Article  Google Scholar 

  93. J. Su, X. Feng, J. Sloppy, L. Guo, and C. Grimes, Nano Lett. 11, 203 (2011).

    Article  Google Scholar 

  94. G. Wang, Y. Ling, H. Wang, X. Yang, C. Wang, J. Zhang, and Y. Li, Energy Environ. Sci. 5, 6180 (2012).

    Article  Google Scholar 

  95. X. Zhao, P. Wang, and B. Li, Chem. Commun. 46, 6768 (2010).

    Article  Google Scholar 

  96. W.M. Jin, J. Kang, and J. Moon, ACS Appl. Mater. Interfaces. 2, 2982 (2010).

    Article  Google Scholar 

  97. Z. Zhang and P. Wang, J. Mater. Chem. 22, 2456 (2012).

    Article  Google Scholar 

  98. A. Kargar, S. Partokia, M. Niu, P. Allameh, M. Yang, S. May, J. Cheung, K. Sun, K. Xu, and D. Wang, Nanotechnology 25, 696 (2014).

    Article  Google Scholar 

  99. W. Siripala, A. Ivanovskaya, T. Jaramillo, S. Baeck, and E. Mcfarland, Sol. Energy Mater. Sol. C 77, 229 (2003).

    Article  Google Scholar 

  100. A. Kargar, Y. Jing, S. Kim, C. Riley, X. Pan, and D. Wang, ACS Nano 7, 11112 (2013).

    Article  Google Scholar 

  101. C. Cheng and H. Fan, Nano Today 7, 327 (2012).

    Article  Google Scholar 

  102. A. Kargar, K. Sun, Y. Jing, C. Choi, H. Jeong, G.Y. Jung, S. Jin, and D. Wang, ACS Nano 7, 9407 (2013).

    Article  Google Scholar 

  103. A. Kargar, K. Sun, Y. Jing, C. Choi, H. Jeong, Y. Zhou, K. Madsen, P. Naughton, S. Jin, and G. Jung, Nano Lett. 13, 3017 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Number: 51402160), Natural Science Foundation of Shandong Province, China (Grant Number: ZR2014EMQ011), and the Applied Basic Research Foundation of Qingdao City (Grant Number: 14-2-4-45-jch), Taishan Scholar Program of Shandong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Song, L., Zhang, H. et al. One-Dimensional Metal-Oxide Nanostructures for Solar Photocatalytic Water-Splitting. J. Electron. Mater. 46, 4716–4724 (2017). https://doi.org/10.1007/s11664-017-5491-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5491-z

Keywords

Navigation