Machine-Learning Approach for Design of Nanomagnetic-Based Antennas

Abstract

We propose a machine-learning approach for design of planar inverted-F antennas with a magneto-dielectric nanocomposite substrate. It is shown that machine-learning techniques can be efficiently used to characterize nanomagnetic-based antennas by accurately mapping the particle radius and volume fraction of the nanomagnetic material to antenna parameters such as gain, bandwidth, radiation efficiency, and resonant frequency. A modified mixing rule model is also presented. In addition, the inverse problem is addressed through machine learning as well, where given the antenna parameters, the corresponding design space of possible material parameters is identified.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    C. Gianfagna, M. Swaminathan, P.M. Raj, R. Tummala, and G. Antonini, Nanotechnology Materials and Devices Conference (NMDC), 2015 IEEE 10th, pp. 1–5. doi: 10.1109/NMDC.2015.7439256.

  2. 2.

    K. Han, M. Swaminathan, R. Pulugurtha, H. Sharma, R. Tummala, S. Yang, and V. Nair, IEEE Antennas Wirel. Propag. Lett. 15, 72 (2016). doi:10.1109/LAWP.2015.2430284.

    Article  Google Scholar 

  3. 3.

    J. Huang, F. Ma, X. Jiang, H. Wang, and J. Li, J. Magn. Magn. Mater. 331, 151 (2013)

  4. 4.

    K.N. Rozanov, M.Y. Koledintseva, and J.L. Drewniak, J. Magn. Magn. Mater. 324, 1063 (2012).

  5. 5.

    Ph. Toneguzzo, O. Acher, G. Viau, F. Fiévet-Vincent, and F. Fiévet, J. Appl. Phys., 81(8), 5546 (1997).

  6. 6.

    I. Conde-Leborán, D. Serantes, and D. Baldomir, J. Magn. Magn. Mater. 380, 321 (2015).

    Article  Google Scholar 

  7. 7.

    R. Ramprasad, P. Zurcher, M. Petras, M. Miller, and P. Renaud, J. Appl. Phys. 9, 519 (2004).

    Article  Google Scholar 

  8. 8.

    G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and R. Ramprasad, in Sci. Rep. 3, 2810.

  9. 9.

    K.N. Rozanov, M.Y. Koledintseva, and J.L. Drewniak, URSI International Symposium on Electromagnetic Theory (EMTS) (2010), pp. 584–587. doi:10.1109/URSI-EMTS.2010.5637159

  10. 10.

    R. Bikky, N. Badi, and A. Bensaoula, COMSOL Conf. 2010.

  11. 11.

    I.J. Youngs, N. Bowler, K.P. Lymer, and S. Hussain, J. Phys. D Appl. Phys. 38, 188 (2005).

    Article  Google Scholar 

  12. 12.

    K.F. Young and H.P.R. Frederikse, J. Phys. Chem. Ref. Data 2, 313 (1973). doi:10.1063/1.3253121.

    Article  Google Scholar 

  13. 13.

    CST Microwave Studio, Computer Simulation Technology. http://www.cst.com/Products/CSTMWS. Accessed 10 July 2015

  14. 14.

    G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko, K.R. Muller, and O. A. von Lilienfeld, New J. Phys. 13 (2013I. doi:10.1088/1367-2630/15/9/095003

  15. 15.

    S. Haykin, Neural Networks and Learning Machines, 3rd ed. (Upper Saddle River, NJ: Pearson - Prentice Hill, 2009), pp. 1–46.

  16. 16.

    K.K. Aggarwal, Y. Singh, P. Chandra, and M. Puri, J. Comput. Sci. 4, 505 (2005). doi:10.3844/jcssp.2005.505.509.

    Google Scholar 

  17. 17.

    D. Michie, D.J. Spiegelhalter, and C.C. Taylor, Machine Learning, Neural and Statistical Classification (Upper Saddle River: Ellis Horwood, 1994), pp. 98–99.

    Google Scholar 

  18. 18.

    Neural Network Toolbox—Matlab. https://www.mathworks. com/products/neural-network.html. Accessed 10 July 2015

  19. 19.

    P.M. Raj, H. Sharma, G.P. Reddy, N. Altunyurt, M. Swaminathan, R. Tummala, and V. Nair, J. Electron. Mater. 43, 1097 (2014). doi:10.1007/s11664-014-3025-5.

    Article  Google Scholar 

  20. 20.

    J.R. Liu, M. Itoh, T. Horikawa, M. Itakura, N. Kuwano, and K. Machida, J. Phys. D Appl. Phys. 37, 2737 (2004).

    Article  Google Scholar 

  21. 21.

    H. Sharma, S. Jain, P. Markondeya Raj, K.P. Murali, and R. Tummala, J. Electron. Mater. 44, 3819 (2015). doi:10.1007/s11664-015-3801-x.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carmine Gianfagna.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gianfagna, C., Yu, H., Swaminathan, M. et al. Machine-Learning Approach for Design of Nanomagnetic-Based Antennas. Journal of Elec Materi 46, 4963–4975 (2017). https://doi.org/10.1007/s11664-017-5487-8

Download citation

Keywords

  • Antenna
  • machine learning
  • magneto-dielectric nanomaterial