Skip to main content
Log in

Interfacial Surface Modification via Nanoimprinting to Increase Open-Circuit Voltage of Organic Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The low-cost patterning of poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate) (PEDOT:PSS) interfacial layers inserted between indium tin oxide and poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid ester blends leads to an improvement in organic photovoltaics (OPV) device performance. Significantly, improvements in all device parameters, including the open-circuit voltage, are achieved. The nanoimprinted devices improved further as the pattern period and imprinting depth was reduced from 727 nm and 42 nm to 340 nm and 10 nm, respectively. A residue of poly(dimethylsiloxane) (PDMS) is found on the interfacial PEDOT:PSS film following patterning and can be used to explain the increase in OPV performance. Ultraviolet photoelectron spectroscopy measurements of the PEDOT:PSS interfacial layer demonstrated a reduction of the work function of 0.4 eV following nanoimprinting which may originate from chemical modification of the PDMS residue or interfacial dipole formation supported by x-ray photoelectron spectroscopy analysis. Ultimately, we have demonstrated a 39% improvement in OPV device performance via a simple low-cost modification of the anode interfacial layer. This improvement can be assigned to two effects resulting from a PDMS residue on the PEDOT:PSS surface: (1) the reduction of the anode work function which in turn decreases the hole extraction barrier, and (2) the reduction of electron transfer from the highest occupied molecular orbital of PCBM to the anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.Y. Chen, J.H. Hou, S.Q. Zhang, Y.Y. Liang, G.W. Yang, Y. Yang, L.P. Yu, Y. Wu, and G. Li, Nat. Photon. 3, 649 (2009).

    Article  Google Scholar 

  2. G. Dennler, M.C. Scharber, and C.J. Brabec, Adv. Mater. 21, 1323 (2009).

    Article  Google Scholar 

  3. J. Liu, Y.J. Shi, and Y. Yang, Adv. Func. Mater. 11, 420 (2001).

    Article  Google Scholar 

  4. A.C. Arias, J.D. Mackenzie, R. Stevenson, J.J.M. Halls, M. Inbasekaran, E.P. Woo, D. Richards, and R.H. Friend, Macromol. 34, 6005 (2001).

    Article  Google Scholar 

  5. J.B. Emah, R.J. Curry, and S.R.P. Silva, Appl. Phys. Lett. 93, 103301 (2008).

    Article  Google Scholar 

  6. V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, and M.T. Rispens, J. Appl. Phys. 94, 6849 (2003).

    Article  Google Scholar 

  7. V.D. Mihailetchi, L.J.A. Koster, and P.W.M. Blom, Appl. Phys. Lett. 85, 970 (2004).

    Article  Google Scholar 

  8. P. Kumar, S.C. Jain, H. Kumar, S. Chand, and V. Kumar, Appl. Phys. Lett. 94, 183505 (2009).

    Article  Google Scholar 

  9. X. Crispin, S. Marciniak, W. Osikowicz, G. Zotti, A.W. Denier Van Der Gon, F. Louwet, M. Fahlman, L. Groenendaal, F. De Schryver, and W.R. Salaneck, J. Polymer. Sci. Part B. 41, 2561 (2003).

    Article  Google Scholar 

  10. L.A.A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, Thin Solid Films 313, 356 (1998).

    Article  Google Scholar 

  11. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J.R. Reynolds, Adv. Mater. 12, 481 (2000).

    Article  Google Scholar 

  12. R. Kiebooms, A. Aleshin, K. Hutchison, and F. Wudl, J. Phys. Chem. B. 101, 11037 (1997).

    Article  Google Scholar 

  13. A. Aleshin, R. Kiebooms, R. Menon, F. Wudl, and A.J. Heeger, Phys. Rev. B 56, 3659 (1997).

    Article  Google Scholar 

  14. A.N. Aleshin, R. Kiebooms, H. Yu, M. Levin, and I. Shlimak, Synth. Met. 94, 157 (1998).

    Article  Google Scholar 

  15. A.N. Aleshin, R. Kiebooms, and A.J. Heeger, Synth. Met. 101, 369 (1999).

    Article  Google Scholar 

  16. Y. Chang, K. Lee, R. Kiebooms, A. Aleshin, and A.J. Heeger, Synth. Met. 105, 203 (1999).

    Article  Google Scholar 

  17. M.-S. Kim, J. Kim, J. Cho, M. Shtein, L.J. Guo, and J. Kim, Appl. Phys. Lett. 90, 123113 (2007).

    Article  Google Scholar 

  18. G. Heywang and F. Jonas, Adv. Mater. 4, 116 (1992).

    Article  Google Scholar 

  19. M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, J. Electroanal. Chem. 369, 87 (1994).

    Article  Google Scholar 

  20. I. Winter, C. Reese, J. Hormes, G. Heywang, and F. Jonas, Chem. Phys. 194, 207 (1995).

    Article  Google Scholar 

  21. Q. Pei, G. Zuccrarello, M. Ahlskog, and O. Inganäs, Polymer 35, 1347 (1994).

    Article  Google Scholar 

  22. E. Vitoratos, S. Sakkopoulos, N. Paliatsas, K. Emmanouil, and S.A. Choulis, Open J. Org. Polymer Mater. 2, 7 (2012).

    Article  Google Scholar 

  23. T. Chou, S. Chen, Y. Chiang, Y. Lin, and C. Chao, J. Mater. Chem. C 3, 3760 (2015).

    Article  Google Scholar 

  24. A.G. Bayer, European Patent EP. 440, 957 (1991).

    Google Scholar 

  25. Agfa Gevaert, European Patent EP. 564, 911 (1993).

    Google Scholar 

  26. F. Jonas, W. Krafft, and B. Muys, Macromol. Symp. 100, 169 (1995).

    Article  Google Scholar 

  27. J.E. McCarthy, C.A. Hanley, L.J. Brennan, V.G. Lambertini, and Y.K. Gun’ko, J. Mater. Chem. C 2, 764 (2014).

    Article  Google Scholar 

  28. S. Karg, J.C. Scott, J.R. Salem, and M. Angelopoulos, Synth. Met. 80, 111 (1996).

    Article  Google Scholar 

  29. J.C. Carter, I. Grizzi, S.K. Heeks, D.J. Lacey, S.G. Latham, P.G. May, O. Ruiz-de-Los-Panos, K. Pichler, C.R. Towns, and H.F. Wittmann, Appl. Phys. Lett. 71, 34 (1997).

    Article  Google Scholar 

  30. S.A. Carter, M. Angelopoulos, S. Karg, P.J. Brock, and J.C. Scott, Appl. Phys. Lett. 70, 2067 (1997).

    Article  Google Scholar 

  31. A.J.M. Berntsen, P.V.D. Weijer, Y. Croonen, C.T.H.F. Liedenbaum, and J.J.M. Vleggaar Philips, J. Res. 51, 511 (1998).

    Google Scholar 

  32. J.S. Kim, P.K.H. Ho, D.S. Thomas, R.H. Friend, F. Cacialli, G.W. Bao, and S.F.Y. Li, Chem. Phys. Lett. 315, 307 (1999).

    Article  Google Scholar 

  33. T.M. Brown, J.S. Kim, R.H. Friend, F. Cacialli, R. Daik, and W.J. Feast, Appl. Phys. Lett. 75, 1679 (1999).

    Article  Google Scholar 

  34. A.C. Arias, M. Granström, K. Pertritsch, and R.H. Friend, Synth. Met. 102, 953 (1999).

    Article  Google Scholar 

  35. J. Ouyang, T.-F. Guo, Y. Yang, H. Higuchi, M. Yoshioka, and T. Nagatsuka, Adv. Mater. 14, 915 (2002).

    Article  Google Scholar 

  36. L.S. Roman, W. Mammo, L.A.A. Pettersson, M.R. Andersson, and O. Inganäs, Adv. Mater. 10, 774 (1998).

    Article  Google Scholar 

  37. L. Ding, M. Jonforsen, L.S. Roman, M.R. Andersson, and O. Inganäs, Synth. Met. 110, 133 (2000).

    Article  Google Scholar 

  38. A. Dhanabalan, J.K.J.V. Duren, P.A.V. Hal, J.L.J.V. Dongen, and R.A.J. Janssen, Adv. Funct. Mater. 11, 255 (2002).

    Article  Google Scholar 

  39. W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, Science 295, 2425 (2002).

    Article  Google Scholar 

  40. T.-H. Lai, S.-W. Tsang, J.R. Manders, S. Chen, and F. So, Mater. Today 16, 424 (2013).

    Article  Google Scholar 

  41. H. Zeng, X. Zhu, Y. Liang, and X. Guo, Polymers 7, 333 (2015).

    Article  Google Scholar 

  42. S. Yamakawa, K. Tajima, and K. Hashimoto, Org. Electron. 10, 511 (2009).

    Article  Google Scholar 

  43. F. Chen, Y. Lin, and C. Ko, Appl. Phys. Lett. 92, 023307 (2008).

    Article  Google Scholar 

  44. A. Karim, J.F. Douglas, B.P. Lee, S.C. Glotzer, J.A. Rogers, R.J. Jackman, E.J. Amis, and G.M. Whitesides, Phys. Rev. E 57, R6273 (1998).

    Article  Google Scholar 

  45. Y. Zhao, Z. Xie, C. Qin, Y. Qu, Y. Geng, and L. Wang, Sol. Energy Mater. Sol. Cells 93, 604 (2009).

    Article  Google Scholar 

  46. D. Bodas and C. Khan-Malek, Microelectron. Eng. 83, 1277 (2006).

    Article  Google Scholar 

  47. E. Bundgaard and F.C. Kerbs, Macromolecules 39, 2823 (2006).

    Article  Google Scholar 

  48. N. Koch, A. Khan, J. Ghijsen, J.-J. Pireaux, J. Schwartz, R.L. Johnson, and A. Elschner, Appl. Phys. Lett. 82, 70 (2003).

    Article  Google Scholar 

  49. G. Greczynski, Th Kugler, M. Keil, W. Osikowicz, M. Fahlman, and W.R. Salaneck, J. Electron Spectro. Rel. Phenom. 121, 1 (2001).

    Article  Google Scholar 

  50. C. He, C. Zhong, H. Wu, R. Yang, W. Yang, F. Huang, G.C. Bazan, and Y. Cao, J. Mater. Chem. 20, 2617 (2010).

    Article  Google Scholar 

  51. L.J.A. Koster, E.C.P. Smits, V.D. Mihailetchi, and P.W.M. Blom, Phys. Rev. B. 72, 085205 (2005).

    Article  Google Scholar 

  52. C.R. Crowel, Solid-State Electron 8, 395 (1965).

    Article  Google Scholar 

  53. P. Nielsen, D.J. Sandman, and A. Epstein, J. Solid State Commun. 17, 1067 (1975).

    Article  Google Scholar 

  54. K. Takeda, H. Teramae, and N. Matsumoto, J. Am. Chem. Soc. 108, 8186 (1986).

    Article  Google Scholar 

  55. K. Takeda, M. Fujino, K. Seki, and H. Inokuchi, Phys. Rev. B. 36, 8129 (1987).

    Article  Google Scholar 

  56. G.G. Ferenczy, A. Tóth, I. Bertóti, and S. Suhai, J. Phys.: Condens. Matter 9, 4781 (1997).

    Google Scholar 

  57. T. Sugano, K. Seki, T. Ohta, H. Fujimoto, and H. Inokuchi, J. Chem. Soc. Jpn. 5, 594 (1990).

    Google Scholar 

  58. V. Graubner, R. Jordan, O. Nuyken, T. Lippert, M. Hauer, B. Schnyder, and A. Wokaun, Appl. Surf. Sci. 197, 786 (2002).

    Article  Google Scholar 

  59. J. Piris, T.E. Dykstra, A.A. Bakulin, P.H.M. van Loosdrecht, W. Knulst, M.T. Trinh, J.M. Schins, and L.D.A. Siebbeles, J. Phys. Chem. C 113, 14500 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out at the Advanced Technology Institute, University of Surrey, UK, and supported by EPSRC funding for which we are grateful. The authors acknowledge the Akwa Ibom State University, Nigeria, for sponsoring the first author for the Ph.D. program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nyakno J. George.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emah, J.B., George, N.J. & Akpan, U.B. Interfacial Surface Modification via Nanoimprinting to Increase Open-Circuit Voltage of Organic Solar Cells. J. Electron. Mater. 46, 4989–4998 (2017). https://doi.org/10.1007/s11664-017-5472-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5472-2

Keywords

Navigation