Journal of Electronic Materials

, Volume 46, Issue 7, pp 4575–4581 | Cite as

Die Bonding Performance Using Bimodal Cu Particle Paste Under Different Sintering Atmospheres

Article

Abstract

A one-step polyol method was employed to synthesize bimodal Cu particles with average diameters around 200 nm and 1000 nm, respectively. The bimodal Cu particles were mixed with a reductive solvent of polyethylene glycol (PEG) to form a paste. The Cu paste was used as die bonding material to prepare Cu joints under N2 or vacuum sintering atmosphere. The results showed that the strength of the Cu joints in N2 atmosphere was always higher than that in vacuum. The shear strength of a Cu joint processed at 350°C under only 0.4 MPa bonding pressure in N2 was above 40 MPa, which was far higher than that obtained using single-sized nano-Cu particle paste. It is related to the dense packing of the bimodal Cu particles and slow decomposition behavior of the reductive PEG solvent. The reductive PEG solvent in the Cu paste, which effectively removed oxides on the surface of the Cu particles, was necessary for easy-oxidized Cu pastes. These results suggested that Cu pastes with suitable particle sizes, reducing solvent and sintering atmosphere could be a proper candidate for low-temperature and low-pressure bonding process.

Keywords

Bimodal Cu particles sintering atmosphere polyethylene glycol die-attach materials shear strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Roccaforte, P. Fiorenza, G. Greco, M. Vivona, R.L. Nigro, F. Giannazzo, A. Patti, and M. Saggio, Appl. Surf. Sci. 301, 9 (2014).CrossRefGoogle Scholar
  2. 2.
    K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, and M. Nogi, Microelectron. Reliab. 52, 375 (2012).CrossRefGoogle Scholar
  3. 3.
    H.S. Chin, K.Y. Cheong, and A.B. Ismail, Metall. Mater. Trans. B 41, 824 (2010).CrossRefGoogle Scholar
  4. 4.
    V.R. Manikam, K.Y. Cheong, and I.E.E.E. Trans, Compon. Packag. Manuf. Technol. 1, 457 (2011).CrossRefGoogle Scholar
  5. 5.
    T. Wang, X. Chen, G.Q. Lu, and G.Y. Lei, J. Electron. Mater. 36, 1333 (2007).CrossRefGoogle Scholar
  6. 6.
    S. Sakamoto, S. Nagao, and K. Suganuma, J. Mater. Sci. Mater. Electron. 24, 2593 (2013).CrossRefGoogle Scholar
  7. 7.
    Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, M. Nakamoto, H. Kakiuchi, and Y. Yoshida, J. Electron. Mater. 40, 2398 (2011).CrossRefGoogle Scholar
  8. 8.
    R. Khazaka, L. Mendizabal, and D. Henry, J. Electron. Mater. 43, 2459 (2014).CrossRefGoogle Scholar
  9. 9.
    A.R. Rathmell, S.M. Bergin, Y.L. Hua, Z.Y. Li, and B.J. Wiley, Adv. Mater. 22, 3558 (2010).CrossRefGoogle Scholar
  10. 10.
    S. Bhanushali, P. Ghosh, A. Ganesh, and W. Cheng, Small 11, 1232 (2015).CrossRefGoogle Scholar
  11. 11.
    X. Liu and H. Nishikawa, Scrip. Mater. 120, 80 (2016).CrossRefGoogle Scholar
  12. 12.
    H. Nishikawa, T. Hirano, T. Takemoto, and N. Terada, Open Surf. Sci. J. 3, 60 (2011).CrossRefGoogle Scholar
  13. 13.
    T. Ishizaki and R. Watanabe, J. Mater. Chem. 22, 25198 (2012).CrossRefGoogle Scholar
  14. 14.
    S. Jeong, S.H. Lee, Y. Jo, S.S. Lee, Y.H. Seo, B.W. Ahn, G. Kim, G.E. Jang, J.U. Park, and B.H. Ryu, J. Mater. Chem. C 1, 2704 (2014).Google Scholar
  15. 15.
    S.W. Park, R. Uwataki, S. Nagao, T. Sugahara, Y. Katoh, H. Ishino, K. Sugiura, K. Tsuruta, and K. Suganuma, in Electronic Components and Technology Conference (ECTC), 2014 IEEE 64th, (2014), pp. 1179–1182.Google Scholar
  16. 16.
    S. Soichi, K. Suganuma, and I.E.E.E. Trans, Compon. Packag. Manuf. Technol. 3, 923 (2013).CrossRefGoogle Scholar
  17. 17.
    J. Jiu, K. Murai, K. Kim, and K. Suganuma, J. Mater. Sci. Mater. Electron. 21, 713 (2010).CrossRefGoogle Scholar
  18. 18.
    J. McCoppin, T.L. Reitz, R. Miller, H. Vijwani, S. Mukhopadhyay, and D. Young, J. Electron. Mater. 43, 3379 (2014).CrossRefGoogle Scholar
  19. 19.
    S.J. Joo, H.J. Hwang, and H.S. Kim, Nanotechnology 25, 265601 (2014).CrossRefGoogle Scholar
  20. 20.
    S.K. Tam, K.Y. Fung, and K.M. Ng, J. Mater. Sci. 51, 1914 (2016).CrossRefGoogle Scholar
  21. 21.
    J. Jiu, H. Zhang, S. Nagao, T. Sugahara, N. Kagami, Y. Suzuki, Y. Akai, and K. Suganuma, J. Mater. Sci. 51, 3422 (2016).CrossRefGoogle Scholar
  22. 22.
    Y. Li, K. Moon, H. Li, and C.P. Wong, in Electronic Components and Technology Conference, 2004. Proceedings. 54th, (2004), pp. 1959–1964.Google Scholar
  23. 23.
    C.A. Lu, P. Lin, H.C. Lin, and S.F. Wang, Jpn. J. Appl. Phys. 46, 251 (2007).CrossRefGoogle Scholar
  24. 24.
    I. Kim and S. Chun, J. Electron. Mater. 40, 1977 (2011).CrossRefGoogle Scholar
  25. 25.
    T. Ogura, S. Takata, M. Takahashi, and A. Hirose, Mater. Trans. 56, 1030 (2015).CrossRefGoogle Scholar
  26. 26.
    T. Ogura, T. Yagishita, S. Takata, T. Fujimoto, and A. Hirose, Mater. Trans. 54, 860 (2013).CrossRefGoogle Scholar
  27. 27.
    Y. Gao, H. Zhang, J. Jiu, S. Nagao, T. Sugahara, and K. Suganuma, RSC Adv. 5, 90202 (2016).CrossRefGoogle Scholar
  28. 28.
    J.L.C. Huaman, K. Sato, S. Kurita, T. Matsumoto, and B. Jeyadevan, J. Mater. Chem. 21, 7062 (2011).CrossRefGoogle Scholar
  29. 29.
    B.K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J.S. Kim, and J. Colloid, Interface Sci. 311, 417 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.The Institute of Scientific and Industrial Research (ISIR)Osaka UniversityIbarakiJapan

Personalised recommendations