Skip to main content
Log in

Design and Characterization of the Ge/Ga2S3 Heterojunction

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the formation and properties of Ga2S3 thin films deposited onto polycrystalline Ge substrates are studied by means of scanning electron microscopy, energy dispersive x-ray analyzer, Raman spectroscopy, x-ray diffraction techniques, ultraviolet–visible light spectrophotometry in the range of 300–1100 nm and by ac signal power spectroscopy in the range of 0.2–3.0 GHz. The first four techniques allowed the determining of the stoichiometry, the vibrational frequencies, the lattice parameters, the plane orientations, the strain and the defect density for the interface. In addition, it was observed that the Ge/Ga2S3 interface exhibited conduction and valence band offsets of 0.83 eV and 0.82 eV, respectively, and the real part of the dielectric spectra experimentally exhibited four resonance peaks centered at frequencies above 357 THz. Moreover, the computational analysis of the imaginary part of the dielectric constant via the Drude–Lorentz model has shown that the interface wave filtering properties are controlled by the electron–plasmon coupling with plasma frequencies in the range of 1.33–2.30 GHz. The drift mobility of electrons in this range was found to be 15.61 cm2/Vs. The real ability of the interface to control wave propagation was confirmed with ac signals propagating tests. The plasmonic features of the interface nominate it for use in microwave cavities and as wireless terahertz receivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Zhang, W. Wang, L. Wang, and S. Sun, ACS Appl. Mater. Interface 4, 593 (2012).

    Article  Google Scholar 

  2. H.D. Kim, H. Ohkita, H. Benten, and Sh. Ito, ACS Appl. Mater. Interface 6, 17551 (2014).

    Article  Google Scholar 

  3. C. Liu, K. Wang, X. Gong, and A.J. Heeger, Chem. Soc. Rev. 45, 4825 (2016).

    Article  Google Scholar 

  4. J.W. Jung, J.W. Jo, E.H. Jung, and W.H. Jo, Organ. Electron. 31, 149 (2016).

    Article  Google Scholar 

  5. S.E. Al Garni and A.F. Qasrawi, Phys. Stat. Sol. (a) 212, 1845 (2015).

    Article  Google Scholar 

  6. Y.-C. Yeo, X. Gong, M.J.H. Van Dal, G. Vellianitis, and M. Passlack, IEEE International Electron Devices Meeting (IEDM) (2015).

  7. Z. Huang, J-G. Huang, K.A. Kokh, V.A. Svetlichnyi, A.V. Shabalina, Yu.M. Andreev, and G.V. Lanskii, 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz) (2015).

  8. P. Blood, Quantum Confined Laser Devices: Optical Gain and Recombination in Semiconductors, Vol. 23 (Oxford: Oxford Univerity Press, 2015).

    Book  Google Scholar 

  9. H.W. Chiu, C.N. Chervin, and S.M. Kauzlarich, Chem. Mater. 17, 4858 (2005).

    Article  Google Scholar 

  10. H.F. Liu, K.K.A. Antwi, N.L. Yakovlev, H.R. Tan, L.T. Ong, S.J. Chua, and D.Z. Chi, ACS Appl. Mater. Interface 6, 3501 (2014).

    Article  Google Scholar 

  11. C. Lin, G. Qu, Zh Li, Sh Dai, H. Ma, T. Xu, Q. Nie, and X. Zhang, J. Am. Ceram. Soc. 96, 1779 (2013).

    Article  Google Scholar 

  12. O. Madelung, Semiconductors: Data Handbook (New York: Springer, 2012).

    Google Scholar 

  13. C.-H. Ho and H.-H. Chen, Sci. Rep. 4, 6143 (2014).

    Article  Google Scholar 

  14. S.E. Al Garni and A.F. Qasrawi, J. Alloys Compd. 633, 499 (2015).

    Article  Google Scholar 

  15. J.J. Sheng, D. Leonhardt, S.M. Han, S.W. Johnston, J.G. Cederberg, and M.S. Carroll, J. Vac. Sci. Technol. B 31, 051201 (2013).

    Article  Google Scholar 

  16. J. Liu, C. Liang, Zh Tian, Sh Zhang, and G. Shao, Sci. Rep. 3, 1741 (2013).

    Article  Google Scholar 

  17. R.K. Dukor, J.M. Chalmers, and P.R. Griffiths, Handbook of Vibrational Spectroscopy, Vibrational Spectroscopy in the Detection of Cancer (New York: Wiley, 2001).

    Google Scholar 

  18. G. Job and R. Rüffler, Physical Chemistry from a Different Angle (Switzerland: Springer, 2016).

    Google Scholar 

  19. V. Stevanović, S. Lany, X. Zhang, and A. Zunger, Phys. Rev. B 85, 115104 (2012).

    Article  Google Scholar 

  20. C. Lin, L. Calvez, H. Tao, M. Allix, A. Moréac, X. Zhang, and X. Zhao, J. Solid State Chem. 184, 584 (2011).

    Article  Google Scholar 

  21. N. Seeburrun, E.F. Archibong, and P. Ramasami, Chem. Phys. Lett. 467, 23 (2008).

    Article  Google Scholar 

  22. L. Makinistian and E.A. Albanesi, Phys. Rev. B 74, 045206 (2006).

    Article  Google Scholar 

  23. M.C. Turcu, Defect Energies, Band Alignments, and Charge Carrier Recombination in Polycrystalline Cu (In, Ga)(Se, S)2 Alloys (2003). http://www.qucosa.de/recherche/ frontdoor/?tx_slubopus4frontend%5Bid%5D=1146.

  24. S.E. Al Garni and A.F. Qasrawi, Mater. Sci. Semicond. Process. 31, 678 (2015).

    Article  Google Scholar 

  25. G. Dresselhaus and M.S. Dresselhaus, Optical properties of solids, in Proceedings of the International School of Physics, ed. by E. Fermi, J. Tauc (New York: Academic, 1966).

  26. S.R. Alharbi and A.F. Qasrawi, Plasmonics (2016). doi:10.1007/s11468-016-0357-4.

    Google Scholar 

  27. L.A. Sinatra, P. LaGrow, W. Peng, A.R. Kirmani, A. Amassian, H. Idriss, and O.M. Bakr, J. Catal. 322, 109 (2015).

    Article  Google Scholar 

  28. L.P.K. Riuttanen, O. Svensk, J. Oksanen, and S. Suihkonen, Appl. Phys. Lett. 107, 051106 (2015).

    Article  Google Scholar 

  29. X. Xu, T. Xiao, X. Gu, X. Yang, S.V. Kershaw, N. Zhao, J. Xu, and Q. Miao, ACS Appl. Mater. Interface 7, 28019 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), at King Abdulaziz University, Jaddah, under the Grant Number G-229-363-37. The authors, therefore, acknowledge with thanks the DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Qasrawi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Garni, S.E., Qasrawi, A.F. Design and Characterization of the Ge/Ga2S3 Heterojunction. J. Electron. Mater. 46, 4848–4856 (2017). https://doi.org/10.1007/s11664-017-5462-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5462-4

Keywords

Navigation