Structural, Mechanical and Optoelectronic Properties of Y2M2O7 (M = Ti, V and Nb) Pyrochlores: A First Principles Study

Abstract

The highly precise spin-polarized density functional approach is utilized to study the structural properties, chemical bonding, mechanical and optoelectronic properties of the cubic Y2M2O7 (M = Ti, V and Nb) pyrochlores. The calculated structural parameters and geometries are consistent with experimental results. Electronic charge density explains that the nature of the bond between Y and M is covalent, whereas Ti-O, V-O and Nb-O bonds are ionic. Mechanical properties of these compounds demonstrate that Y2Nb2O7 and Y2V2O7 are ductile, whereas Y2Ti2O7 is brittle in nature. The electronic band structures confirm the semiconducting nature for all the three materials with band gaps 2.8 eV, 0.2 eV, and 0.4 eV for Y2Ti2O7, Y2V2O7 and Y2Nb2O7, respectively. Optical properties are calculated for the optically active compounds, which show that Y2Ti2O7 and Y2V2O7 are highly dielectric materials and are optically active in the visible and infrared regions of the electromagnetic spectrum.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Z.S. Chen, W.P. Gong, T.F. Chen, and S.L. Li, Bull. Mater. Sci. 34, 429 (2011).

    Article  Google Scholar 

  2. 2.

    K.R. Whittle, L.M.D. Cranswick, S.A.T. Redfern, I.P. Swainson, and G.R. Lumpkin, J. Solid State Chem. 182, 242 (2009).

    Article  Google Scholar 

  3. 3.

    J.M. Pruneda and E. Artacho, Phys. Rev. B 72, 085107 (2005).

    Article  Google Scholar 

  4. 4.

    F. Matteucci, G. Cruciani, M. Dondi, G. Baldi, and A. Barzanti, Acta Mater. 55, 2229 (2007).

    Article  Google Scholar 

  5. 5.

    Y. Jiang, J.R. Smith, and G.R. Odette, Acta Mater. 58, 1536 (2010).

    Article  Google Scholar 

  6. 6.

    A.A. Haghighirad, C. Gross, and W. Assmus, J. Crystal Growth 310, 2277 (2008).

    Article  Google Scholar 

  7. 7.

    H. Fukazawa and Y. Maeno, Phys. Rev. B 67, 054410 (2003).

    Article  Google Scholar 

  8. 8.

    Z.S. Chen, W.P. Gong, T.F. Chen, S.L. Li, D.Y. Wang, and Q.K. Wang, Mater. Lett. 68, 137 (2012).

    Article  Google Scholar 

  9. 9.

    E. Pavitra, G.S.R. Raju, and J.S. Yu, Phys. Status Solidi (RRL)-Rapid Res. Lett. 7, 224 (2013).

    Article  Google Scholar 

  10. 10.

    R. Abe, M. Higashi, K. Sayama, Y. Abe, and H. Sugihara, J. Phys. Chem. B 110, 2219 (2006).

    Article  Google Scholar 

  11. 11.

    S. Pace, V. Cannillo, J. Wu, D.N. Boccaccini, S. Seglem, and A.R. Boccaccini, J. Nucl. Mater. 341, 12 (2005).

    Article  Google Scholar 

  12. 12.

    N. Pailh, M. Gaudon, and A. Demourgues, Mater. Res. Bull. 44, 1771 (2009).

    Article  Google Scholar 

  13. 13.

    Y. Zhang, M. Wang, Z. Le, G. Huang, L. Zou, and Z. Chen, Ceram. Int. 40, 5223 (2014).

    Article  Google Scholar 

  14. 14.

    B.J. Wuensch, K.W. Eberman, C. Heremans, E.M. Ku, P. Onnerud, E.M.E. Yeo, S.M. Haile, J.K. Stalick, and J.D. Jorgensen, Solid State Ion. 129, 1 (2000).

    Article  Google Scholar 

  15. 15.

    A.A. Biswas and Y.M. Jana, J. Magnet. Magnet. Mater. 329, 118 (2013).

    Article  Google Scholar 

  16. 16.

    S. Shamoto, H. Tazawa, Y. Ono, T. Nakano, Y. Nozue, and T. Kajitani, J. Phys. Chem. Solids 62, 325 (2001).

    Article  Google Scholar 

  17. 17.

    H.J. Xiang, E.J. Kan, M.H. Whangbo, C. Lee, S.H. Wei, and X.G. Gong, Phys. Rev. B 83, 174402 (2011).

    Article  Google Scholar 

  18. 18.

    W. Kohn and L.S. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  Google Scholar 

  19. 19.

    O.K. Andersen, Phys. Rev. B 12, 3060 (1975).

    Article  Google Scholar 

  20. 20.

    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 101, 239702 (2008).

    Article  Google Scholar 

  21. 21.

    A.D. Becke and E.R. Johnson, J. Chem. Phys. 124, 221101 (2006).

    Article  Google Scholar 

  22. 22.

    F. Tran, P. Blaha, and K. Schwarz, J. Phys.: Condens. Matter 19, 196208 (2007).

    Google Scholar 

  23. 23.

    I. Khan, I. Ahmad, H.A. Rahnamaye Aliabad, and M. Maqbool, J. Appl. Phys. 112, 073104 (2012).

    Article  Google Scholar 

  24. 24.

    I. Khan, I. Ahmad, H.A.R. Aliabad, S.J. Asadabadi, Z. Ali, and M. Maqbool, Comput. Mater. Sci. 77, 145 (2013).

    Article  Google Scholar 

  25. 25.

    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz, WIEN2 k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology, 2001).

  26. 26.

    M. Jamal, Cubic-elastic (2012). http://www.wien2k.at/ reg_user/unsupported/. Accessed 6 February 2017.

  27. 27.

    M. Jamal, S.J. Asadabadi, I. Ahmad, and H.A.R. Aliabad, Comput. Mater. Sci. 96, 592 (2014).

    Article  Google Scholar 

  28. 28.

    R. Stadler, W. Wolf, R. Podloucky, G. Kresse, J. Furthmuller, and J. Hafner, Phys. Rev. B 54, 1729 (1996).

    Article  Google Scholar 

  29. 29.

    Z. Ali, I. Khan, I. Ahmad, M.S. Khan, and S.J. Asadabadi, Mater. Chem. Phys. 162, 308 (2015).

    Article  Google Scholar 

  30. 30.

    F. Birch, Phys. Rev. 71, 809 (1947).

    Article  Google Scholar 

  31. 31.

    M.A. Subramanian, G. Aramudan, and G.V.S. Rao, Prog. Solid State Chem. 15, 55 (1983).

    Article  Google Scholar 

  32. 32.

    J. Lian, J. Chen, L.M. Wang, R.C. Ewing, J.M. Farmer, L.A. Boatner, and K.B. Helean, Phys. Rev. B 68, 134107 (2003).

    Article  Google Scholar 

  33. 33.

    R. Terki, G. Bertrand, H. Aourag, and C. Coddet, Phys. B 392, 341 (2007).

    Article  Google Scholar 

  34. 34.

    A.K. Pandit, T.H. Ansari, M. Prasad, R.A. Singh, and B.M. Wanklyn, Mater. Lett. 12, 77 (1991).

    Article  Google Scholar 

  35. 35.

    H. Xiao, Y. Zhang, and W.J. Weber, RSC Adv. 2, 7235 (2012).

    Article  Google Scholar 

  36. 36.

    P. Blaha, D.J. Singh, and K. Schwarz, Phy. Rev. Lett 93, 21 (2004).

    Article  Google Scholar 

  37. 37.

    A.A. Haghighirad, F. Ritter, and W. Assmus, Cryst. Growth Des. 8, 1961 (2008).

    Article  Google Scholar 

  38. 38.

    R. Gaudoin, W.M. Foulkes, and G. Rajagopal, J. Phys. Condens. Mater. 14, 8787 (2002).

    Article  Google Scholar 

  39. 39.

    D.V. Suetin, V. Bannikov, I.R. Shein, and A.L. Ivanovskii, Phys. Stat. Soli. B. 246, 1646 (2009).

    Article  Google Scholar 

  40. 40.

    W.H. Qi and M.P. Wang, J. Mater. Sci. Lett. 21, 1743 (2002).

    Article  Google Scholar 

  41. 41.

    N. Korozlu, K. Colakoglu, E. Deligoz, and G. Surucu, Philos. Mag. 90, 1833 (2010).

    Article  Google Scholar 

  42. 42.

    W.A. Harrison, Electronic Structure and Properties of Solids (New York: Dover, 1989).

    Google Scholar 

  43. 43.

    I.R. Shein and A.L. Ivanovskii, J. Phys.: Condens. Matter 20, 415218 (2008).

    Google Scholar 

  44. 44.

    K. Kim, W.R.L. Lambrecht, and B. Segal, Phys. Rev. B 50, 1502 (1994).

    Article  Google Scholar 

  45. 45.

    B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Haris, and P.C. Schmidt, Intermetallics 11, 23 (2003).

    Article  Google Scholar 

  46. 46.

    S.F. Pugh, Philos. Mag. 45, 823 (1954).

    Article  Google Scholar 

  47. 47.

    D. Varshney and S. Shriya, Varshney. Eur. Phys. J. B 85, 241 (2012).

    Article  Google Scholar 

  48. 48.

    D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).

    Article  Google Scholar 

  49. 49.

    I. Khan, A. Afaq, H.A.R. Aliabad, and I. Ahmad, Comput. Mater. Sci. 61, 278 (2012).

    Article  Google Scholar 

  50. 50.

    Z. Ali, S. Ali, I. Ahmad, I. Khan, and H.A.R. Aliabad, Phys. B 420, 54 (2013).

    Article  Google Scholar 

  51. 51.

    I. Khan, I. Ahmad, D. Zhang, H.A.R. Aliabad, and S.J. Asadabadi, J. Phys. Chem. Solids 74, 181 (2013).

    Article  Google Scholar 

  52. 52.

    P. Puschnig and C. Ambrosch-Draxl, Phys. Rev. B 66, 165105 (2002).

    Article  Google Scholar 

  53. 53.

    S. Loughin, R.H. French, L.K. Noyer, W.Y. Ching, and Y.N. Xu, J. Phys. D Appl. Phys. 29, 1740 (1996).

    Article  Google Scholar 

  54. 54.

    H.A.R. Aliabad, S.M. Hosseini, A. Kompany, A. Youssefi, and E.A. Kakhki, Phys. Status Solidi B 246, 1072 (2009).

    Article  Google Scholar 

  55. 55.

    R.F. Egerton, Rep. Prog. Phys. 72, 016502 (2009).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zahid Ali.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ullah, N., Ali, Z., Khan, I. et al. Structural, Mechanical and Optoelectronic Properties of Y2M2O7 (M = Ti, V and Nb) Pyrochlores: A First Principles Study. Journal of Elec Materi 46, 4640–4648 (2017). https://doi.org/10.1007/s11664-017-5450-8

Download citation

Keywords

  • Pyrochlores
  • chemical bonding
  • electronic band profiles
  • ab initio calculations
  • optical properties
  • dielectric materials