Journal of Electronic Materials

, Volume 46, Issue 7, pp 4640–4648

Structural, Mechanical and Optoelectronic Properties of Y2M2O7 (M = Ti, V and Nb) Pyrochlores: A First Principles Study

  • Noor Ullah
  • Zahid Ali
  • Imad Khan
  • Gul Rehman
  • Iftikhar Ahmad
Article
  • 33 Downloads

Abstract

The highly precise spin-polarized density functional approach is utilized to study the structural properties, chemical bonding, mechanical and optoelectronic properties of the cubic Y2M2O7 (M = Ti, V and Nb) pyrochlores. The calculated structural parameters and geometries are consistent with experimental results. Electronic charge density explains that the nature of the bond between Y and M is covalent, whereas Ti-O, V-O and Nb-O bonds are ionic. Mechanical properties of these compounds demonstrate that Y2Nb2O7 and Y2V2O7 are ductile, whereas Y2Ti2O7 is brittle in nature. The electronic band structures confirm the semiconducting nature for all the three materials with band gaps 2.8 eV, 0.2 eV, and 0.4 eV for Y2Ti2O7, Y2V2O7 and Y2Nb2O7, respectively. Optical properties are calculated for the optically active compounds, which show that Y2Ti2O7 and Y2V2O7 are highly dielectric materials and are optically active in the visible and infrared regions of the electromagnetic spectrum.

Keywords

Pyrochlores chemical bonding electronic band profiles ab initio calculations optical properties dielectric materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z.S. Chen, W.P. Gong, T.F. Chen, and S.L. Li, Bull. Mater. Sci. 34, 429 (2011).CrossRefGoogle Scholar
  2. 2.
    K.R. Whittle, L.M.D. Cranswick, S.A.T. Redfern, I.P. Swainson, and G.R. Lumpkin, J. Solid State Chem. 182, 242 (2009).CrossRefGoogle Scholar
  3. 3.
    J.M. Pruneda and E. Artacho, Phys. Rev. B 72, 085107 (2005).CrossRefGoogle Scholar
  4. 4.
    F. Matteucci, G. Cruciani, M. Dondi, G. Baldi, and A. Barzanti, Acta Mater. 55, 2229 (2007).CrossRefGoogle Scholar
  5. 5.
    Y. Jiang, J.R. Smith, and G.R. Odette, Acta Mater. 58, 1536 (2010).CrossRefGoogle Scholar
  6. 6.
    A.A. Haghighirad, C. Gross, and W. Assmus, J. Crystal Growth 310, 2277 (2008).CrossRefGoogle Scholar
  7. 7.
    H. Fukazawa and Y. Maeno, Phys. Rev. B 67, 054410 (2003).CrossRefGoogle Scholar
  8. 8.
    Z.S. Chen, W.P. Gong, T.F. Chen, S.L. Li, D.Y. Wang, and Q.K. Wang, Mater. Lett. 68, 137 (2012).CrossRefGoogle Scholar
  9. 9.
    E. Pavitra, G.S.R. Raju, and J.S. Yu, Phys. Status Solidi (RRL)-Rapid Res. Lett. 7, 224 (2013).CrossRefGoogle Scholar
  10. 10.
    R. Abe, M. Higashi, K. Sayama, Y. Abe, and H. Sugihara, J. Phys. Chem. B 110, 2219 (2006).CrossRefGoogle Scholar
  11. 11.
    S. Pace, V. Cannillo, J. Wu, D.N. Boccaccini, S. Seglem, and A.R. Boccaccini, J. Nucl. Mater. 341, 12 (2005).CrossRefGoogle Scholar
  12. 12.
    N. Pailh, M. Gaudon, and A. Demourgues, Mater. Res. Bull. 44, 1771 (2009).CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, M. Wang, Z. Le, G. Huang, L. Zou, and Z. Chen, Ceram. Int. 40, 5223 (2014).CrossRefGoogle Scholar
  14. 14.
    B.J. Wuensch, K.W. Eberman, C. Heremans, E.M. Ku, P. Onnerud, E.M.E. Yeo, S.M. Haile, J.K. Stalick, and J.D. Jorgensen, Solid State Ion. 129, 1 (2000).CrossRefGoogle Scholar
  15. 15.
    A.A. Biswas and Y.M. Jana, J. Magnet. Magnet. Mater. 329, 118 (2013).CrossRefGoogle Scholar
  16. 16.
    S. Shamoto, H. Tazawa, Y. Ono, T. Nakano, Y. Nozue, and T. Kajitani, J. Phys. Chem. Solids 62, 325 (2001).CrossRefGoogle Scholar
  17. 17.
    H.J. Xiang, E.J. Kan, M.H. Whangbo, C. Lee, S.H. Wei, and X.G. Gong, Phys. Rev. B 83, 174402 (2011).CrossRefGoogle Scholar
  18. 18.
    W. Kohn and L.S. Sham, Phys. Rev. A 140, 1133 (1965).CrossRefGoogle Scholar
  19. 19.
    O.K. Andersen, Phys. Rev. B 12, 3060 (1975).CrossRefGoogle Scholar
  20. 20.
    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 101, 239702 (2008).CrossRefGoogle Scholar
  21. 21.
    A.D. Becke and E.R. Johnson, J. Chem. Phys. 124, 221101 (2006).CrossRefGoogle Scholar
  22. 22.
    F. Tran, P. Blaha, and K. Schwarz, J. Phys.: Condens. Matter 19, 196208 (2007).Google Scholar
  23. 23.
    I. Khan, I. Ahmad, H.A. Rahnamaye Aliabad, and M. Maqbool, J. Appl. Phys. 112, 073104 (2012).CrossRefGoogle Scholar
  24. 24.
    I. Khan, I. Ahmad, H.A.R. Aliabad, S.J. Asadabadi, Z. Ali, and M. Maqbool, Comput. Mater. Sci. 77, 145 (2013).CrossRefGoogle Scholar
  25. 25.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz, WIEN2 k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology, 2001).Google Scholar
  26. 26.
    M. Jamal, Cubic-elastic (2012). http://www.wien2k.at/ reg_user/unsupported/. Accessed 6 February 2017.
  27. 27.
    M. Jamal, S.J. Asadabadi, I. Ahmad, and H.A.R. Aliabad, Comput. Mater. Sci. 96, 592 (2014).CrossRefGoogle Scholar
  28. 28.
    R. Stadler, W. Wolf, R. Podloucky, G. Kresse, J. Furthmuller, and J. Hafner, Phys. Rev. B 54, 1729 (1996).CrossRefGoogle Scholar
  29. 29.
    Z. Ali, I. Khan, I. Ahmad, M.S. Khan, and S.J. Asadabadi, Mater. Chem. Phys. 162, 308 (2015).CrossRefGoogle Scholar
  30. 30.
    F. Birch, Phys. Rev. 71, 809 (1947).CrossRefGoogle Scholar
  31. 31.
    M.A. Subramanian, G. Aramudan, and G.V.S. Rao, Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
  32. 32.
    J. Lian, J. Chen, L.M. Wang, R.C. Ewing, J.M. Farmer, L.A. Boatner, and K.B. Helean, Phys. Rev. B 68, 134107 (2003).CrossRefGoogle Scholar
  33. 33.
    R. Terki, G. Bertrand, H. Aourag, and C. Coddet, Phys. B 392, 341 (2007).CrossRefGoogle Scholar
  34. 34.
    A.K. Pandit, T.H. Ansari, M. Prasad, R.A. Singh, and B.M. Wanklyn, Mater. Lett. 12, 77 (1991).CrossRefGoogle Scholar
  35. 35.
    H. Xiao, Y. Zhang, and W.J. Weber, RSC Adv. 2, 7235 (2012).CrossRefGoogle Scholar
  36. 36.
    P. Blaha, D.J. Singh, and K. Schwarz, Phy. Rev. Lett 93, 21 (2004).CrossRefGoogle Scholar
  37. 37.
    A.A. Haghighirad, F. Ritter, and W. Assmus, Cryst. Growth Des. 8, 1961 (2008).CrossRefGoogle Scholar
  38. 38.
    R. Gaudoin, W.M. Foulkes, and G. Rajagopal, J. Phys. Condens. Mater. 14, 8787 (2002).CrossRefGoogle Scholar
  39. 39.
    D.V. Suetin, V. Bannikov, I.R. Shein, and A.L. Ivanovskii, Phys. Stat. Soli. B. 246, 1646 (2009).CrossRefGoogle Scholar
  40. 40.
    W.H. Qi and M.P. Wang, J. Mater. Sci. Lett. 21, 1743 (2002).CrossRefGoogle Scholar
  41. 41.
    N. Korozlu, K. Colakoglu, E. Deligoz, and G. Surucu, Philos. Mag. 90, 1833 (2010).CrossRefGoogle Scholar
  42. 42.
    W.A. Harrison, Electronic Structure and Properties of Solids (New York: Dover, 1989).Google Scholar
  43. 43.
    I.R. Shein and A.L. Ivanovskii, J. Phys.: Condens. Matter 20, 415218 (2008).Google Scholar
  44. 44.
    K. Kim, W.R.L. Lambrecht, and B. Segal, Phys. Rev. B 50, 1502 (1994).CrossRefGoogle Scholar
  45. 45.
    B. Mayer, H. Anton, E. Bott, M. Methfessel, J. Sticht, J. Haris, and P.C. Schmidt, Intermetallics 11, 23 (2003).CrossRefGoogle Scholar
  46. 46.
    S.F. Pugh, Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
  47. 47.
    D. Varshney and S. Shriya, Varshney. Eur. Phys. J. B 85, 241 (2012).CrossRefGoogle Scholar
  48. 48.
    D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).CrossRefGoogle Scholar
  49. 49.
    I. Khan, A. Afaq, H.A.R. Aliabad, and I. Ahmad, Comput. Mater. Sci. 61, 278 (2012).CrossRefGoogle Scholar
  50. 50.
    Z. Ali, S. Ali, I. Ahmad, I. Khan, and H.A.R. Aliabad, Phys. B 420, 54 (2013).CrossRefGoogle Scholar
  51. 51.
    I. Khan, I. Ahmad, D. Zhang, H.A.R. Aliabad, and S.J. Asadabadi, J. Phys. Chem. Solids 74, 181 (2013).CrossRefGoogle Scholar
  52. 52.
    P. Puschnig and C. Ambrosch-Draxl, Phys. Rev. B 66, 165105 (2002).CrossRefGoogle Scholar
  53. 53.
    S. Loughin, R.H. French, L.K. Noyer, W.Y. Ching, and Y.N. Xu, J. Phys. D Appl. Phys. 29, 1740 (1996).CrossRefGoogle Scholar
  54. 54.
    H.A.R. Aliabad, S.M. Hosseini, A. Kompany, A. Youssefi, and E.A. Kakhki, Phys. Status Solidi B 246, 1072 (2009).CrossRefGoogle Scholar
  55. 55.
    R.F. Egerton, Rep. Prog. Phys. 72, 016502 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Noor Ullah
    • 1
    • 2
  • Zahid Ali
    • 1
    • 2
  • Imad Khan
    • 1
    • 2
  • Gul Rehman
    • 1
    • 2
  • Iftikhar Ahmad
    • 1
    • 3
  1. 1.Center for Computational Materials ScienceUniversity of MalakandDir (L), ChakdaraPakistan
  2. 2.Department of PhysicsUniversity of MalakandDir (L), ChakdaraPakistan
  3. 3.Department of PhysicsAbbottabad University of Science and TechnologyAbbottabadPakistan

Personalised recommendations