Skip to main content

Advertisement

Log in

Evaluation of Alternative Atomistic Models for the Incipient Growth of ZnO by Atomic Layer Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

ZnO thin films are interesting for applications in several technological fields, including optoelectronics and renewable energies. Nanodevice applications require controlled synthesis of ZnO structures at nanometer scale, which can be achieved via atomic layer deposition (ALD). However, the mechanisms governing the initial stages of ALD had not been addressed until very recently. Investigations into the initial nucleation and growth as well as the atomic structure of the heterointerface are crucial to optimize the ALD process and understand the structure–property relationships for ZnO. We have used a complementary suite of in situ synchrotron x-ray techniques to investigate both the structural and chemical evolution during ZnO growth by ALD on two different substrates, i.e., SiO2 and Al2O3, which led us to formulate an atomistic model of the incipient growth of ZnO. The model relies on the formation of nanoscale islands of different size and aspect ratio and consequent disorder induced in the Zn neighbors’ distribution. However, endorsement of our model requires testing and discussion of possible alternative models which could account for the experimental results. In this work, we review, test, and rule out several alternative models; the results confirm our view of the atomistic mechanisms at play, which influence the overall microstructure and resulting properties of the final thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Pearton, D. Norton, K. Ip, Y. Heo, and T. Steiner, Prog. Mater. Sci. 50, 293 (2005).

    Article  Google Scholar 

  2. A. Janotti and G.C. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).

    Article  Google Scholar 

  3. C.Y. Lee, et al., Semicond. Sci. Technol. 25, 105008 (2010).

    Article  Google Scholar 

  4. H. Jin, et al., Sci. Rep. 3, 2140 (2013).

    Article  Google Scholar 

  5. Y. Ren, et al., Chem. Soc. Rev. 41, 4909 (2012).

    Article  Google Scholar 

  6. L. Schmidt-Mende and J.L. MacManus-Driscoll, Mater. Today 10, 40 (2007).

    Article  Google Scholar 

  7. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nat. Mater. 4, 455 (2005).

    Article  Google Scholar 

  8. Y. Kuang, et al., Rep. Prog. Phys. 76, 106502 (2013).

    Article  Google Scholar 

  9. T. Tynell and M. Karppinen, Semicond. Sci. Technol. 29, 043001 (2014).

    Article  Google Scholar 

  10. G. Luka, M. Godlewski, E. Guziewicz, P. Stakhira, V. Cherpak, and D. Volynyuk, Semicond. Sci. Technol. 27, 074006 (2012).

    Article  Google Scholar 

  11. M.-J. Chen, J.-R. Yang, and M. Shiojiri, Semicond. Sci. Technol. 27, 074005 (2012).

    Article  Google Scholar 

  12. J. Niinistö, K. Kukli, M. Heikkilä, M. Ritala, and M. Leskelä, Adv. Eng. Mater. 11, 223 (2009).

    Article  Google Scholar 

  13. D.D. Fong, J.A. Eastman, S.K. Kim, T.T. Fister, M.J. Highland, P.M. Baldo, and P.H. Fuoss, Appl. Phys. Lett. 97, 191904 (2010).

    Article  Google Scholar 

  14. R. Boichot, et al., Chem. Mater. 28, 592 (2016).

    Article  Google Scholar 

  15. M.H. Chu, L. Tian, A. Chaker, V. Cantelli, T. Ouled, R. Boichot, A. Crisci, S. Lay, M.-I. Richard, O. Thomas, J.-L. Deschanvres, H. Renevier, D.D. Fong, and G. Ciatto, Cryst. Growth Des. 16, 5339 (2016).

    Article  Google Scholar 

  16. The reactor has been designed and built with the guidance of Mr. Dominique de Barros.

  17. G. Ciatto, M.H. Chu, P. Fontaine, N. Aubert, H. Renevier, and J.L. Deschanvres, Thin Solid Films 617, 48 (2016).

    Article  Google Scholar 

  18. P. Fontaine, G. Ciatto, N. Aubert, and M. Goldmann, Sci. Adv. Mater. 6, 2312 (2014).

    Article  Google Scholar 

  19. C. Brouder, J. Phys. Condens. Matter 2, 701 (1990).

    Article  Google Scholar 

  20. G. Ciatto, F. d’Acapito, F. Boscherini, and S. Mobilio, J. Synchrotron Radiat. 11, 278 (2004).

    Article  Google Scholar 

  21. O. Bunau and Y. Joly, J. Phys. Condens. Matter 21, 345501 (2009).

    Article  Google Scholar 

  22. G.E. Kimball and G.H. Shortley, Phys. Rev. 45, 815 (1934).

    Article  Google Scholar 

  23. H. Iwanaga, A. Kunishige, and S. Takeuchi, J. Mater. Sci. 35, 2451 (2000).

    Article  Google Scholar 

  24. M. Malvestuto, et al., Phys. Rev. B 71, 075318 (2005).

    Article  Google Scholar 

  25. R.L. Puurunen and W. Vandervorst, J. Appl. Phys. 96, 7686 (2004).

    Article  Google Scholar 

  26. A.R. Chetal, P. Mahto, and P.R. Sarode, J. Phys. Chem. Solids 49, 279 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Ciatto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, MH., Tian, L., Chaker, A. et al. Evaluation of Alternative Atomistic Models for the Incipient Growth of ZnO by Atomic Layer Deposition. J. Electron. Mater. 46, 3512–3517 (2017). https://doi.org/10.1007/s11664-017-5448-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5448-2

Keywords

Navigation