Skip to main content

Advertisement

Log in

Fully Printed Memristors from Cu–SiO2 Core–Shell Nanowire Composites

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This article describes a fully printed memory in which a composite of Cu–SiO2 nanowires dispersed in ethylcellulose acts as a resistive switch between printed Cu and Au electrodes. A 16-cell crossbar array of these memristors was printed with an aerosol jet. The memristors exhibited moderate operating voltages (∼3 V), no degradation over 104 switching cycles, write speeds of 3 μs, and extrapolated retention times of 10 years. The low operating voltage enabled the programming of a fully printed 4-bit memristor array with an Arduino. The excellent performance of these fully printed memristors could help enable the creation of fully printed RFID tags and sensors with integrated data storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Suganuma, Introduction to Printed Electronics (New York: Springer, 2013).

    Google Scholar 

  2. T.H. Van Osch, J. Perelaer, A.W. de Laat, and U.S. Schubert, Adv. Mater. 20, 343 (2008).

    Article  Google Scholar 

  3. P.H. Lau, K. Takei, C. Wang, Y. Ju, J. Kim, Z. Yu, T. Takahashi, G. Cho, and A. Javey, Nano Lett. 13, 3864 (2013).

    Article  Google Scholar 

  4. F. Molina-Lopez, D. Briand, and N.F. de Rooij, Sens. Actuator B Chem. 166, 212 (2012).

    Article  Google Scholar 

  5. L. Yang, A. Rida, R. Vyas, and M.M. Tentzeris, IEEE Trans. Microwave Theory Tech. 55, 2894 (2007).

    Article  Google Scholar 

  6. A. Facchetti, Chem. Mater. 23, 733 (2010).

    Article  Google Scholar 

  7. P. Kopola, M. Tuomikoski, R. Suhonen, and A. Maaninen, Thin Solid Films 517, 5757 (2009).

    Article  Google Scholar 

  8. A.R. Rathmell, S.M. Bergin, Y.L. Hua, Z.Y. Li, and B.J. Wiley, Adv. Mater. 22, 3558 (2010).

    Article  Google Scholar 

  9. J. Lee, P. Lee, H.B. Lee, S. Hong, I. Lee, J. Yeo, S.S. Lee, T.-S. Kim, D. Lee, and S.H. Ko, Adv. Funct. Mater. 23, 4171 (2013).

    Article  Google Scholar 

  10. J. Chang, X. Zhang, T. Ge, and J. Zhou, Org. Electron. 15, 701 (2014).

    Article  Google Scholar 

  11. A.M. Gaikwad, D.A. Steingart, T.N. Ng, D.E. Schwartz, and G.L. Whiting, Appl. Phys. Lett. 102, 233302 (2013).

    Article  Google Scholar 

  12. A.C. Arias, J. Daniel, B. Krusor, S. Ready, V. Sholin, and R. Street, J. Soc. Inf. Disp. 15, 485 (2007).

    Article  Google Scholar 

  13. M. Magliulo, M. Mulla, M. Singh, E. Macchia, A. Tiwari, L. Torsi, and K. Manoli, J. Mater. Chem. C 3, 12347 (2015).

    Article  Google Scholar 

  14. S.-T. Han, Y. Zhou, and V.A.L. Roy, Adv. Mater. 25, 5425 (2013).

    Article  Google Scholar 

  15. H.-T. Lin, Z. Pei, J.-R. Chen, C.-P. Kung, Y.-C. Lin, C.-M. Tseng, and Y.-J. Chan, in 2007 IEEE International Electron Devices Meeting (IEEE, 2007), pp. 233–236.

  16. U.S. Bhansali, M.A. Khan, and H.N. Alshareef, Microelectron. Eng. 105, 68 (2013).

    Article  Google Scholar 

  17. T.N. Ng, D.E. Schwartz, L.L. Lavery, G.L. Whiting, B. Russo, B. Krusor, J. Veres, P. Bröms, L. Herlogsson, N. Alam, O. Hagel, J. Nilsson, and C. Karlsson, Sci. Rep. 2, 585 (2012).

    Article  Google Scholar 

  18. J.Y. Bak, S.W. Jung, and S.M. Yoon, Org. Electron. 14, 2148 (2013).

    Article  Google Scholar 

  19. C. Kim, J.-M. Song, J.-S. Lee, and M.J. Lee, Nanotechnology 25, 014016 (2013).

    Article  Google Scholar 

  20. K.J. Baeg, D. Khim, J. Kim, B.D. Yang, M. Kang, S.W. Jung, I.K. You, D.Y. Kim, and Y.Y. Noh, Adv. Funct. Mater. 22, 2915 (2012).

    Article  Google Scholar 

  21. G.U. Siddiqui, M.M. Rehman, and K.H. Choi, Polymer 100, 102 (2016).

    Article  Google Scholar 

  22. M.M. Rehman, G.U. Siddiqui, J.Z. Gul, S.-W. Kim, J.H. Lim, and K.H. Choi, Sci. Rep. 6, 36195 (2016).

    Article  Google Scholar 

  23. P.A. Laplante and S.J. Ovaska, Real-Time Systems Design and Analysis: Tools for the Practitioner (Hoboken: Wiley, 2011).

    Book  Google Scholar 

  24. L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971).

    Article  Google Scholar 

  25. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).

    Article  Google Scholar 

  26. N. Duraisamy, N.M. Muhammad, H.-C. Kim, J.-D. Jo, and K.-H. Choi, Thin Solid Films 520, 5070 (2012).

    Article  Google Scholar 

  27. D.-H. Lien, Z.-K. Kao, T.-H. Huang, Y.-C. Liao, S.-C. Lee, and J.-H. He, ACS Nano 8, 7613 (2014).

    Article  Google Scholar 

  28. S.K. Vishwanath and J. Kim, J. Mater. Chem. C 4, 10967 (2016).

    Article  Google Scholar 

  29. M.N. Awais, N.M. Muhammad, D. Navaneethan, H.C. Kim, J. Jo, and K.H. Choi, Microelectron. Eng. 103, 167 (2013).

    Article  Google Scholar 

  30. N.M. Muhammad, N. Duraisamy, K. Rahman, H.W. Dang, J. Jo, and K.H. Choi, Curr. Appl. Phys. 13, 90 (2013).

    Article  Google Scholar 

  31. S. Zou and C. Michael, in 2014 IEEE 64th Electronic Components and Technology Conference (ECTC) (IEEE, 2014), pp. 441–446.

  32. A.A. Bessonov, M.N. Kirikova, D.I. Petukhov, M. Allen, T. Ryhänen, and M.J. Bailey, Nat. Mater. 14, 199 (2015).

    Article  Google Scholar 

  33. P.F. Flowers, M.J. Catenacci, and B.J. Wiley, Nanoscale Horiz. 1, 313 (2016).

  34. S. Ye, A.R. Rathmell, Y.-C. Ha, A.R. Wilson, and B.J. Wiley, Small 10, 1771 (2014).

    Article  Google Scholar 

  35. Y. Kobayashi, H. Katakami, E. Mine, D. Nagao, M. Konno, and L.M. Liz-Marzán, J. Colloid Interface Sci. 283, 392 (2005).

    Article  Google Scholar 

  36. D.-H. Shin, S. Woo, H. Yem, M. Cha, S. Cho, M. Kang, S. Jeong, Y. Kim, K. Kang, and Y. Piao, ACS Appl. Mater. Interfaces 6, 3312 (2014).

    Article  Google Scholar 

  37. C. Schindler, M. Weides, M.N. Kozicki, and R. Waser, Appl. Phys. Lett. 92, 122910 (2008).

    Article  Google Scholar 

  38. C. Schindler, G. Staikov, and R. Waser, Appl. Phys. Lett. 94, 072109 (2009).

    Article  Google Scholar 

  39. S. Kim, H. Moon, D. Gupta, S. Yoo, and Y.K. Choi, IEEE Trans. Electron. Devices 56, 696 (2009).

    Article  Google Scholar 

  40. J.W. Seo, J.-W. Park, K.S. Lim, S.J. Kang, Y.H. Hong, J.H. Yang, L. Fang, G.Y. Sung, and H.-K. Kim, Appl. Phys. Lett. 95, 133508 (2009).

    Article  Google Scholar 

  41. E. Linn, R. Rosezin, C. Kugeler, and R. Waser, Nat. Mater. 9, 403 (2010).

    Article  Google Scholar 

  42. K.-H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, and W. Lu, Nano Lett. 12, 389 (2012).

    Article  Google Scholar 

  43. M.A. Zidan, H.A.H. Fahmy, M.M. Hussain, and K.N. Salama, Microelectron. J. 44, 176 (2013).

    Article  Google Scholar 

  44. J.J. Yang, M.-X. Zhang, M.D. Pickett, F. Miao, J.P. Strachan, W.-D. Li, W. Yi, D.A. Ohlberg, B.J. Choi, and W. Wu, Appl. Phys. Lett. 100, 113501 (2012).

    Article  Google Scholar 

  45. J. Zhou, K.-H. Kim, and W. Lu, IEEE Trans. Electron. Devices 61, 1369 (2014).

    Article  Google Scholar 

  46. M.N. Awais, H.C. Kim, Y.H. Doh, and K.H. Choi, Thin Solid Films 536, 308 (2013).

    Article  Google Scholar 

  47. P. Vilmi, M. Nelo, J.-V. Voutilainen, J. Palosaari, J. Pörhönen, S. Tuukkanen, H. Jantunen, J. Juuti, and T. Fabritius, Flex. Print. Electron. 1, 025002 (2016).

    Article  Google Scholar 

  48. K. Rahman, M. Mustafa, N. Muhammad, and K. Choi, Electron. Lett. 48, 1261 (2012).

    Article  Google Scholar 

  49. S. Zou, P. Xu, and M. Hamilton, Electron. Lett. 49, 829 (2013).

    Article  Google Scholar 

  50. G. Siddiqui, J. Ali, Y.-H. Doh, and K.H. Choi, Mater. Lett. 166, 311 (2016).

    Article  Google Scholar 

  51. A. Kim, K. Song, Y. Kim, and J. Moon, ACS Appl. Mater. Interfaces 3, 4525 (2011).

    Article  Google Scholar 

  52. M.N. Awais and K.H. Choi, Electron. Mater. Lett. 10, 601 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Wiley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catenacci, M.J., Flowers, P.F., Cao, C. et al. Fully Printed Memristors from Cu–SiO2 Core–Shell Nanowire Composites. J. Electron. Mater. 46, 4596–4603 (2017). https://doi.org/10.1007/s11664-017-5445-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5445-5

Keywords