Skip to main content
Log in

Characterization of Sputtered HfO2−x –TiO2−x Nanocolumn Arrays and Their Application in Photocatalysis

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The physical and chemical properties of sputtered HfO2−x –TiO2−x nanocolumn arrays and the photocatalytic action of high-\(\varepsilon\) (HfO2) nanocolumns for decomposition of methylene blue have been studied. Fabrication of HfO2−x –TiO2−x nanocolumn array composites by reactive sputtering without further treatment was comprehensively investigated. Well-isolated HfO2−x nanocolumns with maximum separation of approximately 500 nm and excellent orientation normal to the substrate were obtained. The coupling between HfO2−x and TiO2−x was found to be crucial for enhanced photocatalytic action; the optimal coupling was identified for HfO2−x –TiO2−x nanocolumn composites with four pairs of alternating layers, which showed better performance (by approximately 25%) under 30 W of ultraviolet (UV) irradiation, compared with TiO2−x thin films. The synergistic photocatalytic effect was predominantly attributed to defect-induced electron migration along the HfO2−x nanocolumn structure. In addition, the corresponding photoluminescence spectra and energy band diagram for the HfO2−x –TiO2−x system were used to complement the photocatalytic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.J. Shieh, M. Li, Y.H. Lee, S.D. Sheu, Y.T. Liu, and Y.C. Wang, Nanomedicine 2, 121 (2006).

    Article  Google Scholar 

  2. J. Peral, X. Domenech, and D.F. Ollis, J. Chem. Technol. Biotechnol. 70, 117 (1997).

    Article  Google Scholar 

  3. M.A. Lazar, S. Varghese, and S.S. Nair, Catalysts 2, 572 (2012).

    Article  Google Scholar 

  4. K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, Langmuir 27, 3275 (2011).

    Article  Google Scholar 

  5. M.A. Fox and M.T. Dulay, Chem. Rev. 93, 341 (1993).

    Article  Google Scholar 

  6. M.R. Hoffmann, S.T. Martin, W.D. Choi, and W. Bahnemann, Chem. Rev. 95, 69 (1995).

    Article  Google Scholar 

  7. N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, and P. Vaziri, Int. J. Mol. Sci. 13, 12242 (2012).

    Article  Google Scholar 

  8. S. Han, L. Hu, N. Gao, A.A. Al-Ghamdi, and X. Fang, Adv. Funct. Mater. 24, 3725 (2014).

    Article  Google Scholar 

  9. J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan, and C.L. Bai, Angew. Chem. 117, 1295 (2005).

    Article  Google Scholar 

  10. M.Y. Guo, A.M.C. Ng, F. Liu, A.B. Djurisic, W.K. Chan, H. Su, and K.S. Wong, J. Phys. Chem. C 115, 11095 (2011).

    Article  Google Scholar 

  11. X. Zhang, L. Zhang, G. Yan, J. Shen, M. Gao, J. Li, H. Dong, D. Zhao, L. Cai, Q. Chen, W. Zhou, and S. Xie, J. Nanosci. Nanotechnol. 12, 1 (2012).

    Article  Google Scholar 

  12. L.W. Zhang, Y.J. Wang, H.Y. Cheng, W.Q. Yao, and Y.F. Zhu, Adv. Mater. 21, 1286 (2009).

    Article  Google Scholar 

  13. F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, and J.M. Liu, Adv. Mater. 19, 2889 (2007).

    Article  Google Scholar 

  14. X. Chen and C. Burda, J. Am. Chem. Soc. 130, 5018 (2008).

    Article  Google Scholar 

  15. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001).

    Article  Google Scholar 

  16. M. Anpo, Pure Appl. Chem. 72, 1787 (2000).

    Google Scholar 

  17. J.S. Lee, K.H. You, and C.B. Park, Adv. Mater. 24, 1084 (2012).

    Article  Google Scholar 

  18. H.S. Wu, L.D. Sun, H.P. Zhou, and C.H. Yan, Nanoscale 4, 3242 (2012).

    Article  Google Scholar 

  19. M. Wang, L. Sun, Z. Lin, J. Cai, K. Xie, and C. Lin, Energy Environ. Sci. 6, 1211 (2013).

    Article  Google Scholar 

  20. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, and A.A. Sokol, Nat. Mater. 12, 798 (2013).

    Article  Google Scholar 

  21. G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  Google Scholar 

  22. P.A. Packan, Science 285, 2079 (1999).

    Article  Google Scholar 

  23. http://www.intel.com/pressroom/kits/advancedtech/doodle/ref_HiK-MG/high-k.htm. Accessed 2017.

  24. J.V. Houdt, Proceedings of the IEEE 43rd Annual International Reliability Physics Symposium, San Jose (2005), p. 234. doi:10.1109/RELPHY.2005.1493090.

  25. A.I. Kingon, J.P. Maria, and S.K. Streiffer, Nature 406, 1032 (2000).

    Article  Google Scholar 

  26. J.H. Choi, Y. Mao, and J.P. Chang, Mater. Sci. Eng. R 72, 97 (2011).

    Article  Google Scholar 

  27. T. Ando, Materials 5, 478 (2012).

    Article  Google Scholar 

  28. N. Jie, Z. Yu, Z. Qin, and Z. Zhang, J. Am. Ceram. Soc. 91, 3458 (2008).

    Article  Google Scholar 

  29. R. Chau, S. Datta, M. Doczy, J. Kavalieros, and M. Metz, International. Workshop on Gate Insulator, Tokyo, Japan (2003), p. 124. doi:10.1109/IWGI.2003.159198.

  30. K. Tse and J. Robertson, Appl. Phys. Lett. 89, 142914 (2006).

    Article  Google Scholar 

  31. K. Xiong, J. Robertson, M.C. Gibson, and S.J. Clark, Appl. Phys. Lett. 87, 183505 (2005).

    Article  Google Scholar 

  32. D.G. Schlom, S. Guha, and S. Datta, MRS Bull. 33, 1017 (2008).

    Article  Google Scholar 

  33. R.F. Service, Science 323, 1000 (2009).

    Article  Google Scholar 

  34. Z. Chen, N. Zhang, and Y.J. Xu, CrystEngComm 15, 3022 (2013).

    Article  Google Scholar 

  35. J.C. Dhar, A. Mondal, N.K. Singh, and K.K. Chattopadhyay, J. Appl. Phys. 113, 174304 (2013).

    Article  Google Scholar 

  36. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003).

    Article  Google Scholar 

  37. S.W. Kang, S.K. Mohanta, Y.Y. Kim, and H.K. Cho, Cryst. Growth Des. 8, 1458 (2008).

    Article  Google Scholar 

  38. H.F. Liu, G.X. Hu, and H. Gong, J. Cryst. Growth 311, 268 (2009).

    Article  Google Scholar 

  39. D. Deniz and R.J. Lad, J. Vac. Sci. Technol. A 29, 011020 (2011).

    Article  Google Scholar 

  40. J.H. Huang, C.Y. Wang, C.P. Liu, W.H. Chu, and Y.J. Chang, Appl. Phys. A 87, 749 (2007).

    Article  Google Scholar 

  41. Y. Pihosh, I. Turkevych, J. Ye, M. Goto, A. Kasahara, M. Kondo, and M. Tosa, J. Electrochem. Soc. 156, K160 (2009).

    Article  Google Scholar 

  42. Z.C. Li, L.P. Xing, and Z.J. Zhang, Adv. Mater. Sci. Eng. 2012, 1 (2012).

    Google Scholar 

  43. M.C. Cisneros-Moralesa and C.R. Aita, Appl. Phys. Lett. 93, 021915 (2008).

    Article  Google Scholar 

  44. B.A. Movchan and A.V. Demchishin, Phys. Met. Metallogr. 28, 83 (1969).

    Google Scholar 

  45. J.A. Thornton, J. Vac. Sci. Technol. A 4, 3059 (1986).

    Article  Google Scholar 

  46. X.H. Xia, Y. Liang, Z. Wang, J. Fan, Y.S. Luo, and Z. Jia, Mater. Res. Bull. 43, 2187 (2008).

    Article  Google Scholar 

  47. Z.-A. Lin, W.-C. Lu, C.-Y. Wu, and K.-S. Chang, Ceram. Int. 40, 15523 (2014).

    Article  Google Scholar 

  48. A.S. Foster, F.L. Gejo, A.L. Shluger, and R.M. Nieminen, Phys. Rev. B 65, 174117 (2002).

    Article  Google Scholar 

  49. I. Chung, B. Lee, J. He, R.P.H. Chang, and M.G. Kanatzidis, Nature 485, 486 (2012).

    Article  Google Scholar 

  50. X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, Nanoscale 5, 3601 (2013).

    Article  Google Scholar 

  51. L. Jing, Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu, and J. Sun, Sol. Energy Mater. Sol. Cells 90, 1773 (2006).

    Article  Google Scholar 

  52. J.G. Mendoza, M.A.A. Frutis, G.A. Flores, M.G. Hipolito, A.M. Cerda, J.A. Nieto, T.R. Montalvo, and C. Falcony, Appl. Radiat. Isot. 68, 696 (2010).

    Article  Google Scholar 

  53. S.A. Eliziario, L.S. Cavalcante, J.C. Sczancoski, P.S. Pizani, J.A. Varela, J.W.M. Espinosa, and E. Longo, Nanoscale Res. Lett. 4, 1371 (2009).

    Article  Google Scholar 

  54. Q. Zeng, L. Wu, Y. Zhang, B. Qi, and J. Zhi, Scr. Mater. 62, 810 (2010).

    Article  Google Scholar 

  55. C.J. Li, G.R. Xu, B. Zhanga, and J.R. Gonga, Appl. Catal. B 115–116, 201 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Ministry of Science and Technology, Taiwan, under Grants MOST 102-2221-E-006-073 and MOST 102-2633-E-006-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kao-Shuo Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, HC., Chang, KS. Characterization of Sputtered HfO2−x –TiO2−x Nanocolumn Arrays and Their Application in Photocatalysis. J. Electron. Mater. 46, 4532–4538 (2017). https://doi.org/10.1007/s11664-017-5434-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5434-8

Keywords

Navigation