Skip to main content
Log in

High Temperature Electronic and Thermal Transport Properties of EuGa2−x In x Sb2

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The Zintl phase EuGa2Sb2 was synthesized via ball milling followed by hot pressing. The crystal structure of EuGa2Sb2 is comprised of a 3-D network of polyanionic [Ga2Sb2]2− tunnels filled with Eu cations that provide charge balance (Eu2+[Ga2Sb2]2−). Here we report the temperature-dependent resistivity, Hall Effect, Seebeck coefficient and thermal conductivity for EuGa2−x In x Sb2 (x = 0, 0.05, 0.1) from 300 K to 775 K. Experimental results demonstrate that the material is a p-type semiconductor. However, a small band gap (∼0.1 eV) prevents EuGa2Sb2 from having high zT at higher temperatures. Isoelectronic substitution of In on the Ga site leads to point defect scattering of holes and phonons, thus reducing thermal conductivity and resulting in a slight improvement in zT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Yazawa, Y.R. Koh, and A. Shakouri, Appl. Energy 109, 1 (2013).

    Article  Google Scholar 

  2. K. Yazawa, M. Hao, B. Wu, A.K. Silaen, C.Q. Zhou, T.S. Fisher, and A. Shakouri, Energy Convers. Manag. 84, 244 (2014).

    Article  Google Scholar 

  3. N. Miljkovic and E.N. Wang, Sol. Energy 85, 2843 (2011).

    Article  Google Scholar 

  4. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (London: Taylor & Francis, 2005).

    Book  Google Scholar 

  5. H. Goldsmid, Materials 7, 2577 (2014).

    Article  Google Scholar 

  6. S.M. Kauzlarich, eds., Chemistry, Structure, and Bonding of Zintl Phases and Ions (New York: VCH Publishers Inc., 1996).

    Google Scholar 

  7. E. Toberer, A. May, and G.J. Snyder, Chem. Mater. 22, 624 (2010).

    Article  Google Scholar 

  8. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  9. K. Guo, Q.-G. Cao, X.-J. Feng, M.-B. Tang, H.-H. Chen, X. Guo, L. Chen, Yu Grin, and J.-T. Zhao, Eur. J. Inorg. Chem. 2011, 4043 (2011).

    Article  Google Scholar 

  10. J. Wang, X.-C. Liu, S.-Q. Xia, and X.-T. Tao, J. Am. Chem. Soc. 135, 11840 (2013).

    Article  Google Scholar 

  11. C.A. Cox, E.S. Toberer, A.A. Levchenko, S.R. Brown, G.J. Snyder, A. Navrotsky, and S.M. Kauzlarich, Chem. Mater. 21, 1354 (2009).

    Article  Google Scholar 

  12. H. Tamaki, H.K. Sato, and T. Kanno, Adv. Mater. 28, 10182 (2016).

    Article  Google Scholar 

  13. U. Aydemir, A. Zevalkink, A. Ormeci, Z.M. Gibbs, S. Bux, and G.J. Snyder, Chem. Mater. 27, 1622 (2015).

    Article  Google Scholar 

  14. K. Guo, Q. Cao, and J. Zhao, J. Rare Earth 31, 1029 (2013).

    Article  Google Scholar 

  15. U. Aydemir, A. Zevalkink, A. Ormeci, S. Bux, and G.J. Snyder, J. Mater. Chem. A 4, 1867 (2016).

    Article  Google Scholar 

  16. I. Schellenberg, M. Eul, and R. Pöttgen, Monatsh. Chem. 142, 875 (2011).

    Article  Google Scholar 

  17. N. Singh, R. Pöttgen, and U. Schwingenschlögl, J. Appl. Phys. 112, 103714 (2012).

    Article  Google Scholar 

  18. Program STOE WinXPOW (Darmstadt: Stoe & Cie GmbH, 2003)

  19. K.A. Borup, E.S. Toberer, L.D. Zoltan, G. Nakatsukasa, M. Errico, J.-P. Fleurial, B.B. Iberson, and G.J. Snyder, Rev. Sci. Instrum. 83, 123902 (2012).

    Article  Google Scholar 

  20. K.A. Borup, J. de Boor, H. Wang, F. Drymiotis, F. Gascoin, X. Shi, L.D. Chen, M.I. Fedorov, E. Muller, B.B. Iversena, and G.J. Snyder, Energy Environ. Sci. 8, 423 (2015).

    Article  Google Scholar 

  21. K. Koepernik and H. Eschrig, Phys. Rev. B 59, 1743 (1999).

    Article  Google Scholar 

  22. J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  23. V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).

    Article  Google Scholar 

  24. H. Eschrig, K. Koepernik, and I. Chaplygin, J. Solid State Chem. 176, 482 (2003).

    Article  Google Scholar 

  25. M. Kohout, Int. J. Quantum Chem. 97, 651 (2004).

    Article  Google Scholar 

  26. M. Kohout, Faraday Discuss. 135, 43 (2007).

    Article  Google Scholar 

  27. R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford: Clarendon Press, 1995).

    Google Scholar 

  28. S. Raub and G. Jansen, Theor. Chem. Acc. 106, 223 (2001).

    Article  Google Scholar 

  29. A. Ormeci, H. Rosner, F.R. Wagner, M. Kohout, and Y. Grin, J. Phys. Chem. A 110, 1100 (2006).

    Article  Google Scholar 

  30. M. Kohout, Program DGRID, Version 4.6 (Germany: Radebeul, 2011).

    Google Scholar 

  31. J. Emsley, The Elements (Oxford: Oxford University Press, 1998).

    Google Scholar 

  32. S.A. Arrhenius, Zeitschrift fuer Physikalische Chemie, Stoechiometrie und Verwandtschaftslehre 1, 110 (1887)

  33. S. Kasap, C. Koughia, H. Ruda, and R. Johanson, in Springer Handbook of Electronic and Photonic Materials, ed. by S. Kasap and P. Capper (Boston, MA: Springer US, 2007), pp. 19–45

  34. A. Zevalkink, G.S. Pomrehn, S. Johnson, J. Swallow, Z.M. Gibbs, and G.J. Snyder, Chem. Mater. 24, 2091 (2012).

    Article  Google Scholar 

  35. H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015).

    Article  Google Scholar 

  36. M. Roufosse and P.G. Klemens, Phys. Rev. B 7, 5379 (1973).

    Article  Google Scholar 

  37. A. Zevalkink, W.G. Zeier, G. Pomrehn, E. Schechtel, W. Tremel, and G.J. Snyder, Energy Environ. Sci. 5, 9121 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This research was performed partially at the Jet Propulsion Laboratory supported by the NASA Science Missions Directorate’s Radioisotope Power System’s Thermoelectric Technology Development project under contract with the NASA. U.A. acknowledges the financial assistance provided by The Scientific and Technological Research Council of Turkey. S.C. and U.A. thank Alexandra Zevalkink for her edits and discussions, Douglas Hofmann for speed of sound measurements, Kurt Star for his input during discussions and Stephanie Reyes, Prastuti Singh, and Eugene Vinitsky for their help finding literature. A.O. thanks Ulrike Nitzsche from IFW Dresden, Germany for technical help in computational work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut Aydemir.

Additional information

Sevan Chanakian and Rochelle Weber have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanakian, S., Weber, R., Aydemir, U. et al. High Temperature Electronic and Thermal Transport Properties of EuGa2−x In x Sb2 . J. Electron. Mater. 46, 4798–4804 (2017). https://doi.org/10.1007/s11664-017-5423-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5423-y

Keywords

Navigation