Skip to main content

Advertisement

Log in

The Structure, Dielectric and Energy Storage Properties of Strontium Barium Niobate-Based Glass–Ceramics Doped with La2O3

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the effect of La2O3 content on the phase evolution, microstructure, dielectric properties and energy storage properties of the strontium barium niobate (SBN)-based glass–ceramics were studied. The results show that the La3+ is easily incorporated into the tetragonal tungsten bronze structured phase, and La2O3 doped into the BSN-glass–ceramics, as a grain growth inhibitor, can have an evident effect on the grain size reduction and crystallization. The microstructure of the SBN-glass–ceramics becomes denser and more uniform with increasing La2O3 content. The remanent polarization of all samples is extremely low. The dielectric constant of the SBN-glass–ceramics obviously is decreased, while the breakdown strength is increased with the increment of La2O3 content. When La2O3 content in the SBN-glass–ceramics is 0.2 mol.%, the theoretical energy storage density is at the maximal level of 7.2 J/cm3. In addition, the energy discharging efficiency and discharging speed of the SBN-glass–ceramics with different La2O3 content were evaluated. With La2O3 content increasing, the energy discharging efficiency gradually increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Lange, J. Am. Ceram. Soc. 72, 3 (1989).

    Article  Google Scholar 

  2. K. Slenes, P. Winsor, T. Scholz, and M. Hudis, Magnetics. IEEE Trans. 37, 324 (2001).

    Google Scholar 

  3. J. Luo, J. Du, Q. Tang, and C. Mao, Electron devices. IEEE Trans. 55, 3549 (2008).

    Article  Google Scholar 

  4. H. Ogihara, C. Randall, and S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 19 (2009).

    Google Scholar 

  5. I. Burn and D. Smyth, J. Mater. Sci. 7, 339 (2009).

    Article  Google Scholar 

  6. E. Gorzkowski, M. Pan, B. Bender, and C. Wu, J. Am. Ceram. Soc. 91, 1065 (2009).

    Article  Google Scholar 

  7. C. Cheng, M. Lanagan, B. Jones, J. Lin, and M. Pan, J. Am. Ceram. Soc. 88, 3037 (2005).

    Article  Google Scholar 

  8. A. Herczog, Parts, Hybrids, and Packaging. IEEE Trans. 9, 247 (2005).

    Google Scholar 

  9. T. Liu, G. Chen, J. Song, and C. Yuan, Ceram. Int. 39, 5553 (2013).

    Article  Google Scholar 

  10. Y. Zhou, Q. Zhang, J. Luo, Q. Tang, and J. Du, Scr. Mater. 65, 296 (2011).

    Article  Google Scholar 

  11. J. Wang, L. Tang, B. Shen, and J. Zhai, J. Mater. Res. 29, 288 (2014).

    Article  Google Scholar 

  12. S. Xue, S. Liu, W. Zhang, J. Wang, L. Tang, B. Shen, and J. Zhai, J. Alloys Compd. 617, 418 (2014).

    Article  Google Scholar 

  13. J. Luo, Q. Tang, Q. Zhang, L. Wang, J. Du, H. Li, and J. Liu, Mater. Lett. 65, 1976 (2011).

    Article  Google Scholar 

  14. S. Xiu, S. Xiao, W. Zhang, S. Xue, B. Shen, and J. Zhai, J. Alloys Compd. 670, 217 (2016).

    Article  Google Scholar 

  15. S. Xiu, S. Xiao, S. Xue, B. Shen, and J. Zhai, J. Mater. Sci. Mater. Electron. 27, 5324 (2016).

    Article  Google Scholar 

  16. J. Chen, J. Mater. Sci. Technol. 30, 295 (2014).

    Article  Google Scholar 

  17. Y. Zhou, Q. Zhang, J. Luo, Q. Tang, and J. Du, J. Am. Ceram. Soc. 96, 372 (2013).

    Google Scholar 

  18. J. Zheng, G. Chen, C. Yuan, C. Zhou, X. Chen, Q. Feng, and M. Li, Ceram. Int. 42, 1827 (2016).

    Article  Google Scholar 

  19. S. Deshpande, H. Potdar, and P. Godbole, J. Am. Ceram. Soc. 75, 2581 (1992).

    Article  Google Scholar 

  20. S. Xiu, S. Xiao, S. Xue, B. Shen, and J. Zhai, J. Electron. Mater. 45, 1017 (2015).

    Article  Google Scholar 

  21. L. Tang, W. Wang, B. Shen, J. Zhai, and L. Kong, J. Electron. Mater. 44, 227 (2014).

    Article  Google Scholar 

  22. C.V. Ramana, R.S. Vemuri, V.V. Kaichev, V.A. Kochubey, A.A. Saraev, and V.V. Atuchin, ACS Mater. Interfaces 3, 4370 (2011).

    Article  Google Scholar 

  23. V.V. Atuchin, A.V. Kalinkin, V.A. Kochubey, V.N. Kruchinin, R.S. Vemuri, and C.V. Ramana, J. Vac. Sci. Technol. A 29, 021004 (2011).

    Article  Google Scholar 

  24. A. Kishimoto, K. Koumoto, and H. Yanagida, J. Mater. Sci. 24, 698 (1989).

    Article  Google Scholar 

  25. A. Young, G. Hilmas, S. Zhang, and R. Schwartz, J. Mater. Sci. 42, 5613 (2007).

    Article  Google Scholar 

  26. J. Huang, Y. Zhang, T. Ma, H. Li, and L. Zhang, Appl. Phys. Lett. 96, 2902 (2010).

    Google Scholar 

  27. G. Love, J. Am. Ceram. Soc. 73, 323 (1990).

    Article  Google Scholar 

  28. H. Zhang, X. Chen, F. Cao, G. Wang, X. Dong, Z. Hu, and T. Du, J. Am. Ceram. Soc. 93, 4015 (2010).

    Article  Google Scholar 

  29. H. Wang, J. Liu, J. Zhai, and B. Shen, J. Am. Ceram. Soc. 99, 2909 (2016).

    Article  Google Scholar 

  30. S. Xue, S. Liu, W. Zhang, B. Chen, and J. Zhai, Appl. Phys. Lett. 106, 1065 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiu, S., Xiao, S., Shen, B. et al. The Structure, Dielectric and Energy Storage Properties of Strontium Barium Niobate-Based Glass–Ceramics Doped with La2O3 . J. Electron. Mater. 46, 4557–4561 (2017). https://doi.org/10.1007/s11664-017-5422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5422-z

Keywords

Navigation