Advertisement

Journal of Electronic Materials

, Volume 46, Issue 6, pp 3295–3300 | Cite as

Lasing from ZnO Nanocrystals in ZnO-ZnS Microbelts

  • N. V. Nghia
  • N. D. Dung
  • P. T. Huy
  • D. H. Nguyen
Article
  • 84 Downloads

Abstract

We present an investigation of the morphology, structure, composition, chemical state and optical properties of ZnO-ZnS microbelts grown by the thermal evaporation method. It is found that the ZnO-ZnS microbelts are composed of ZnS and ZnO nanocrystals with high crystalline quality. Under optical pumping from a Nd:YAG laser at 266 nm, stimulated lasing emissions from ZnO nanocrystals are observed with a threshold as low as 10 mJ/cm2. The low lasing threshold of ZnO nanocrystals is interpreted as a result of the modification of ZnO surfaces with a ZnS layer that efficiently passivates the surface defects and reduces nonradiative Auger recombination.

Keywords

ZnO nanocrystal ZnO-ZnS microbelts thermal evaporation lasing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Foundation for Science and Technology Development (NAFOSTED), Vietnam, under Project No. 103.06-2011.06. The XPS measurements have been carried out at the Green Mobility Collaborative Research Center (GREMO), Nagoya University, Japan.

References

  1. 1.
    M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, and P.D. Yang, Science 292, 1897 (2001).CrossRefGoogle Scholar
  2. 2.
    X.F. Duan, Y. Huang, R. Agarwal, and C.M. Lieber, Nature 421, 241 (2003).CrossRefGoogle Scholar
  3. 3.
    S. Thangavel, K. Krishnamoorthy, V. Krishnaswamy, N. Raju, S.J. Kim, and G. Venugopal, J. Phys. Chem. C 119, 22057 (2015).CrossRefGoogle Scholar
  4. 4.
    S.J. Jiao, Z.Z. Zhang, Y.M. Lu, D.Z. Shen, B. Yao, J.Y. Zhang, B.H. Li, D.X. Zhao, X.W. Fan, and Z.K. Tang, Appl. Phys. Lett. 88, 031911 (2006).CrossRefGoogle Scholar
  5. 5.
    Z. Wang, Z. Tian, D. Han, and F. Gu, ACS Appl. Mater. Interfaces 8, 5466 (2016).CrossRefGoogle Scholar
  6. 6.
    J. Fallert, R.J.B. Dietz, M. Hauser, F. Stelzl, C. Klingshirn, and H. Kalt, J. Lumin. 129, 1685 (2009).CrossRefGoogle Scholar
  7. 7.
    S.F. Yu, C. Yuen, S.P. Lau, and H.W. Lee, Appl. Phys. Lett. 84, 3244 (2004).CrossRefGoogle Scholar
  8. 8.
    C.T. Dominguez, M.D.A. Gomes, Z.S. Macedo, C.B.D. Araujo, and A.S.L. Gomes, Nanoscale 7, 317 (2015).CrossRefGoogle Scholar
  9. 9.
    J. Fallert, R.J.B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, Nature Photonics 3, 279 (2009).CrossRefGoogle Scholar
  10. 10.
    R. Chen, Q.-L. Ye, T. He, V.D. Ta, Y. Ying, Y.Y. Tay, T. Wu, and H. Sun, Nano Lett. 13, 734 (2013).CrossRefGoogle Scholar
  11. 11.
    S.H. Lee, T. Goto, H. Miyazaki, J. Chang, and T. Yao, Nano Lett. 10, 2038 (2010).CrossRefGoogle Scholar
  12. 12.
    H.-Y. Li, S. Rühle, R. Khedoe, A.F. Koenderink, and D. Vanmaekelbergh, Nano Lett. 10, 3515 (2009).CrossRefGoogle Scholar
  13. 13.
    J.K. Song, U. Willer, J.M. Szarko, S.R. Leone, S. Li, and Y. Zhao, J. Phys. Chem. C 112, 1679 (2008).CrossRefGoogle Scholar
  14. 14.
    S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, Nat. Nanotechnol. 6, 506 (2011).CrossRefGoogle Scholar
  15. 15.
    X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, Appl. Phys. Lett. 91, 251109 (2007).CrossRefGoogle Scholar
  16. 16.
    X. Fang, Z. Wei, R. Chen, J. Tang, H. Zhao, L. Zhang, D. Zhao, D. Fang, J. Li, F. Fang, X. Chu, and X. Wang, ACS Appl. Mater. Interfaces 7, 10331 (2015).CrossRefGoogle Scholar
  17. 17.
    H.Y. Yang, S.F. Yu, J. Yan, and L.D. Zhang, Appl. Phys. Lett. 96, 141115 (2010).CrossRefGoogle Scholar
  18. 18.
    J.-Y. Hwang, S.Y. Park, J.-H. Park, J.-N. Kim, S.M. Koo, and C.H. Ko, Thin Solid Films 520, 1832 (2012).CrossRefGoogle Scholar
  19. 19.
    J. Li, D. Zhao, X. Meng, Z. Zhang, J. Zhang, D. Shen, Y. Lu, and X. Fan, J. Phys. Chem. B 110, 14685 (2006).CrossRefGoogle Scholar
  20. 20.
    D.Q. Trung, N. Tu, N.D. Hung, and P.T. Huy, J. Lumin. 169, 165 (2016).CrossRefGoogle Scholar
  21. 21.
    D.Q. Trung, P.T. Thang, N.D. Hung, and P.T. Huy, J. Alloys Compd. 676, 150 (2016).CrossRefGoogle Scholar
  22. 22.
    J. Kim and K. Yong, J. Phys. Chem. C 115, 7218 (2011).CrossRefGoogle Scholar
  23. 23.
    M. Futsuhara, K. Yoshioka, and O. Takai, Thin Solid Films 317, 322 (1998).CrossRefGoogle Scholar
  24. 24.
    X.T. Wang, L.P. Zhu, L.Q. Zhang, J. Jiang, Z.G. Yang, Z.Z. Ye, and B. He, J. Alloys Compd. 509, 3282 (2011).CrossRefGoogle Scholar
  25. 25.
    J. Jiang, Xu H, L. Zhu, W. Niu, Y. Guo, Y. Li, L. Hu, H. He, and Z. Ye, J. Alloys Compd. 582, 535 (2014).CrossRefGoogle Scholar
  26. 26.
    A. Önsten, D. Stoltz, P. Palmgren, S. Yu, T. Claesson, M. GÖthelid, and U.O. Karlsson, Surf. Sci. 608, 31 (2013).CrossRefGoogle Scholar
  27. 27.
    J.A. Rodriguez, T. Jirsak, S. Chaturvedi, and M. Kuhn, Surf. Sci. 442, 400 (1999).CrossRefGoogle Scholar
  28. 28.
    J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, and H. Kalt, Opt. Express 16, 1125 (2008).CrossRefGoogle Scholar
  29. 29.
    N.S. Han, H.S. Shim, J.H. Seo, S.M. Park, B.K. Min, J. Kim, and J.K. Song, Chem. Phys. Lett. 505, 51 (2011).CrossRefGoogle Scholar
  30. 30.
    S.A. Ivanov, J. Nanda, A. Piryatinski, M. Achermann, L.P. Balet, I.V. Bezel, P.O. Anikeeva, S. Tretiak, and V.I. Klimov, J. Phys. Chem. B 108, 10625 (2004).CrossRefGoogle Scholar
  31. 31.
    G. Xing, Y. Liao, X. Wu, S. Chakrabortty, X. Liu, E.K.L. Yeow, Y. Chan, and T.C. Sum, ACS Nano 6, 10835 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Advanced Institute for Science and Technology (AIST)Hanoi University of Science and Technology (HUST)HanoiVietnam

Personalised recommendations