Skip to main content

Advertisement

Log in

First Principles Calculations of Transition Metal Binary Alloys: Phase Stability and Surface Effects

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The phase stability and surface effects on binary transition metal nano-alloy systems were investigated using density functional theory-based first principles calculations. In this study, we evaluated the cohesive and alloying energies of six binary metal alloy bulk systems that sample each type of alloys according to miscibility, i.e., Au-Ag and Pd-Ag for the solid solution-type alloys (SS), Pd-Ir and Pd-Rh for the high-temperature solid solution-type alloys (HTSS), and Au-Ir and Ag-Rh for the phase-separation (PS)-type alloys. Our results and analysis show consistency with experimental observations on the type of materials in the bulk phase. Varying the lattice parameter was also shown to have an effect on the stability of the bulk mixed alloy system. It was observed, particularly for the PS- and HTSS-type materials, that mixing gains energy from the increasing lattice constant. We furthermore evaluated the surface effects, which is an important factor to consider for nanoparticle-sized alloys, through analysis of the (001) and (111) surface facets. We found that the stability of the surface depends on the optimization of atomic positions and segregation of atoms near/at the surface, particularly for the HTSS and the PS types of metal alloys. Furthermore, the increase in energy for mixing atoms at the interface of the atomic boundaries of PS- and HTSS-type materials is low enough to overcome by the gain in energy through entropy. These, therefore, are the main proponents for the possibility of mixing alloys near the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Shield and R.K. Williams, Scr. Metall. 21, 1475 (1987).

    Article  Google Scholar 

  2. S.N. Tripathi and S.R. Bharadwaj, J. Phase Equilib. 15, 208 (1994).

    Article  Google Scholar 

  3. S.N. Tripathi, S.R. Bharadwaj, and M.S. Chandrasekharaiah, J. Phase Equilib. 12, 603 (1991).

    Article  Google Scholar 

  4. I. Karakaya and W.T. Thompson, Bull. Alloys Phase Diagr. 9, 237 (1988).

    Article  Google Scholar 

  5. I. Karakaya and W.T. Thompson, Bull. Alloys Phase Diagr. 8, 43 (1987).

    Article  Google Scholar 

  6. I. Karakaya and W.T. Thompson, Bull. Alloys Phase Diagr. 7, 363 (1986).

    Google Scholar 

  7. O.H. Okamoto and T.B. Massalski, Bull. Alloys Phase Diagr. 5, 381 (1984).

    Google Scholar 

  8. O.H. Okamoto and T.B. Massalski, Bull. Alloys Phase Diagr. 5, 384 (1984).

    Article  Google Scholar 

  9. K. Kusada, M. Yamauchi, H. Kobayashi, H. Kitagawa, and Y. Kubota, J. Am. Chem. Soc. 132, 15896 (2010).

    Article  Google Scholar 

  10. K. Kusada, H. Kobayashi, R. Ikeda, Y. Kubota, M. Takata, S. Toh, T. Yamamoto, S. Matsumura, N. Sumi, K. Sato, K. Nagaoka, and H. Kitagawa, J. Am. Chem. Soc. 136, 1864 (2013).

    Article  Google Scholar 

  11. N. Ozawa, T.A. Roman, H. Nakanishi, H. Kasai, N.B. Arboleda Jr., and W.A. Diño, J. Appl. Phys. 101, 123530 (2007).

    Article  Google Scholar 

  12. K. Shimizu, W.A. Diño, and H. Kasai, J. Phys. Soc. Jpn. 83, 013601 (2014).

    Article  Google Scholar 

  13. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  14. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  15. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  16. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  17. T. Abbas, M. Ullah, A.M. Rana, and R.M. Arif Khalil, Mater. Sci. Pol. 25, 1161 (2007).

    Google Scholar 

  18. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  19. E.A. Owen and E.L. Yates, Lond. Edinb. Dublin Philos. Mag. J. Sci.: Ser. 7, 472 (1933).

    Article  Google Scholar 

  20. A.R. Dendton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).

    Article  Google Scholar 

  21. K. Momma and F. Izumi, J. Appl. Cryst. 44, 1272 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nakanishi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aspera, S.M., Arevalo, R.L., Shimizu, K. et al. First Principles Calculations of Transition Metal Binary Alloys: Phase Stability and Surface Effects. J. Electron. Mater. 46, 3776–3783 (2017). https://doi.org/10.1007/s11664-017-5402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5402-3

Keywords

Navigation