Journal of Electronic Materials

, Volume 46, Issue 8, pp 4784–4790 | Cite as

Luminescence of Nanoporous Si and ALD-Deposited ZnO on Nanoporous Si Substrate

  • Vuong-Hung PhamEmail author
  • Phuong Dinh Tam
  • Nguyen Huu Dung
  • Duy-Hung Nguyen
  • Pham Thanh Huy


This paper reports the attempt at synthesizing nanoporous silicon (Si) with a dendritic-like structure and atomic layer deposition (ALD) of ZnO on nanoporous Si to control light emission intensity and emission center by applying an optimum voltage, etching time and thickness of ZnO layer. The dendritic-like structure of nanoporous Si was formed with low etching voltages of 5–10 V. Fourier transform infrared absorption spectra of the nanoporous Si reveals that the intensities of hydride stretching, SiH2 scissor mode and Si-O-Si vibration peak increase with the increasing of etching time. The formation of a thick dendritic-like structure with an increasing SiH2 bond resulted in significant enhancement of luminescence. In addition, the ALD-deposited ZnO layer on nanoporous Si resulted in light emission from both ZnO and nanoporous Si under a single excitation source. These results suggest the potential application of an ALD-deposited ZnO layer on nanoporous Si in designing materials for advanced optoelectronics.


Luminescence nanoporous Si surface properties etching ZnO ALD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research is funded by Hanoi University of Science and Technology under grant number T2016-PC-014.


  1. 1.
    E. Blanco, A. Hsiao, A.P. Mann, M.G. Landry, M.B. Funda, and M. Ferari, Cancer Sci. 102, 1247 (2011).CrossRefGoogle Scholar
  2. 2.
    B. Sumer and J. Gao, Nanomedicine 3, 137 (2008).CrossRefGoogle Scholar
  3. 3.
    T. Boulikas, A. Pantos, E. Bellis, and P. Christofis, Cancer Ther. 5, 537 (2007).Google Scholar
  4. 4.
    O.P. Singh and R.M. Nehru, Asia J. Exp. Sci. 22, 45 (2008).Google Scholar
  5. 5.
    V.H. Pham and P.T. Huy, Mater. Lett. 142, 126 (2015).Google Scholar
  6. 6.
    Y.J. Gu, J. Cheng, C.C. Lin, Y.W. Lam, S.H. Cheng, and W.T. Wong, Toxicol. Appl. Pharmacol. 237, 196 (2009).CrossRefGoogle Scholar
  7. 7.
    R. Zhang, C. Wu, X. Wang, Q. Sun, B. Chen, X. Li, S. Gutman, and G. Lv, Mater. Sci. Eng. C 29, 1697 (2009).CrossRefGoogle Scholar
  8. 8.
    K.L. Jarvis, T.J. Barnes, and C.A. Prestidge, Adv. Colloid Interface Sci. 175, 25 (2012).CrossRefGoogle Scholar
  9. 9.
    Y.L. Khung, G. Barritt, and N.H. Voelcker, Exp. Cell Res. 314, 789 (2008).CrossRefGoogle Scholar
  10. 10.
    C. Lee, H. Kim, Y. Cho, and W.I. Lee, J. Mater. Chem. 17, 2648 (2007).CrossRefGoogle Scholar
  11. 11.
    M. Rahmani, H. Ajlani, A. Moadhen, M.A. Zaïbi, L. Haji, and M. Oneslati, J. Alloys Compd. 506, 496 (2010).CrossRefGoogle Scholar
  12. 12.
    C.N. Liyange and D.J. Blackwood, Thin Solid Films 55, 677 (2014).CrossRefGoogle Scholar
  13. 13.
    B. Cho, S. Jin, B.Y. Lee, M. Hwang, H.C. Kim, and H. Sohm, Micro. Eng. 89, 92 (2012).CrossRefGoogle Scholar
  14. 14.
    N. Chiboub, N. Gabouze, J.N. Chazalviel, F. Ozanam, S. Moulay, and A. Manseri, Appl. Surf. Sci. 256, 3826 (2010).CrossRefGoogle Scholar
  15. 15.
    R.G. Singh, F. Singh, D. Kanjilal, V. Agarwal, and R.M. Mehra, J. Phys. D Appl. Phys. 42, 062002 (2009).CrossRefGoogle Scholar
  16. 16.
    S.Y. Ma, X.H. Yang, X.L. Huang, A.M. Sun, H.S. Song, and H.B. Zhu, J. Alloys Compd. 566, 9 (2013).CrossRefGoogle Scholar
  17. 17.
    E. Kayahan, J. Lumin. 130, 1295 (2010).CrossRefGoogle Scholar
  18. 18.
    M.S. Kim, K.G. Yim, S. Kim, G. Nam, and J.Y. Leem, J. Sol-Gel. Sci. Technol. 59, 364 (2011).CrossRefGoogle Scholar
  19. 19.
    V.H. Pham and P.T. Huy, Mater. Lett. 142, 126 (2015).CrossRefGoogle Scholar
  20. 20.
    T.Ya. Gorbach, G.Yu. Rudko, P.S. Smertenko, S.V. Svechnikov, M.Ya. Valakh, V.P. Bondarenko, and A.M. Dorofeev, Semicond. Sci. Technol. 11, 601 (1996).CrossRefGoogle Scholar
  21. 21.
    Y. Zhao, Z. Lv, Z. Li, X. Liang, J. Min, L. Wang, W. Shi, and Y. Liu, Solid-State Electron. 54, 452 (2010).CrossRefGoogle Scholar
  22. 22.
    M. Li, M. Hu, Q. Liu, S. Ma, and P. Sun, App. Surf. Sci. 268, 188 (2013).CrossRefGoogle Scholar
  23. 23.
    X.W. Du, Y. Jin, N.Q. Zhao, Y.S. Fu, and S.A. Kulinich, App. Surf. Sci. 254, 2479 (2008).CrossRefGoogle Scholar
  24. 24.
    N. Naddaf and H. Hamadeh, Mater. Sci. Eng. C 29, 2092 (2009).CrossRefGoogle Scholar
  25. 25.
    S.S. Chang, A. Sakai, and R. Hummel, Mater. Sci. Eng. B 64, 118 (1999).CrossRefGoogle Scholar
  26. 26.
    P.V. Tuan, C.A. Tuan, V.B. Nam, P.T. Thang, P.H. Duong, and P.T. Huy, J. Lumin. 154, 46 (2014).CrossRefGoogle Scholar
  27. 27.
    H. He, C. Liu, L. Sun, and Z. Ye, Appl. Phys. Lett. 99, 123106 (2011).CrossRefGoogle Scholar
  28. 28.
    R. Chen, J. Lumin. 102–103, 510 (2003).CrossRefGoogle Scholar
  29. 29.
    H.C. Hsu, C.S. Cheng, C.C. Chang, S. Yang, C.S. Chang, and W.F. Hsieh, Thin Solid Films 562, 597 (2014).CrossRefGoogle Scholar
  30. 30.
    Ł. Wachnicki, T. Krajewski, G. Łuka, B. Witkowski, B. Kowalski, K. Kopalko, J.Z. Domagala, M. Guziewicz, M. Godlewski, and E. Guziewicz, Thin Solid Films 518, 4556 (2010).CrossRefGoogle Scholar
  31. 31.
    J. Lim and C. Lee, Thin Solid Films 515, 3335 (2007).CrossRefGoogle Scholar
  32. 32.
    M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R.P.H. Chang, Appl. Phys. Lett. 86, 151113 (2005).CrossRefGoogle Scholar
  33. 33.
    Y.M. Chang, S.R. Jian, H.Y. Lee, C.M. Lin, and J.Y. Juang, Nanotechnology 21, 385705 (2010).CrossRefGoogle Scholar
  34. 34.
    H. Wang, Z. Yin, W. Xu, D. Zhou, S. Cui, X. Chen, H. Cui, and H. Song, Nanoscale 8, 10004 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Vuong-Hung Pham
    • 1
    Email author
  • Phuong Dinh Tam
    • 1
  • Nguyen Huu Dung
    • 1
  • Duy-Hung Nguyen
    • 1
  • Pham Thanh Huy
    • 1
  1. 1.Advanced Institute for Science and Technology (AIST)Hanoi University of Science and Technology (HUST)HanoiVietnam

Personalised recommendations