Influence of Hydrothermal Temperature on the Optical Properties of Er-Doped SnO2 Nanoparticles

Abstract

This work reports on crystallization and optical properties of SnO2:Er3+ with a fixed Er3+ concentration of 0.25 at.%, prepared by the hydrothermal method. Crystal structure and morphology of the materials were studied by x-ray diffraction (XRD) and field emission transmission electron microscopy. Characteristic light emission at 1.5 μm for radiative 4 I 13/2 → 4 I 15/2 transitions within the 4f electron shell of Er3+ ions was studied by photoluminescence (PL) and excitation spectroscopy. The optical bandgap of the nanoparticles was examined by ultraviolet--visible absorption measurements. SnO2:Er3+ nanoparticles were formed in single-phase tetragonal rutile structure by applying temperatures ranging from 120°C to 200°C during the hydrothermal synthesis. An average crystal size of 5 nm was estimated by the Scherrer equation using the XRD data and found to be independent from the investigated hydrothermal temperatures. Whereas, the Er3+-related PL intensities were found to increase strongly with the hydrothermal temperature.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    I. Maksimenko and P.J. Wellmann, Thin Solid Films 520, 1341 (2011).

    Article  Google Scholar 

  2. 2.

    Y.J. Shin, Q. Zhang, and F. Hua, Thin Solid Films 516, 3167 (2008).

    Article  Google Scholar 

  3. 3.

    J. Robertson, J. Non. Cryst. Solids 354, 2791 (2008).

    Article  Google Scholar 

  4. 4.

    C. Xu, Y. Jiang, D. Yi, S. Sun, and Z. Yu, J. Appl. Phys. 111, 063504 (2012).

    Article  Google Scholar 

  5. 5.

    E.O. Igbinovia and P.A. Ilenikhena, Int. J. Phys. Sci. 5, 1770 (2010).

    Google Scholar 

  6. 6.

    S.F. Bamsaoud, S.B. Rane, R.N. Karekar, and R.C. Aiyer, Sens. Actuat B-Chem. 153, 382 (2011).

    Article  Google Scholar 

  7. 7.

    A. Heilig, N. Barsan, U. Weimar, and W. Göpel, Sens. Actuat B-Chem. 58, 302 (1999).

    Article  Google Scholar 

  8. 8.

    S.G. Ansari, Z.A. Ansari, R. Wahab, Y.S. Kim, G. Khang, and H.S. Shin, Biosens. Bioelectron. 23, 1838 (2008).

    Article  Google Scholar 

  9. 9.

    J. Sun, J. Xu, Y. Yu, P. Sun, F. Liu, and G. Lu, Sens. Actuat B-Chem. 169, 291 (2012).

    Article  Google Scholar 

  10. 10.

    J. Kong, H. Zhu, R. Li, W. Luo, and X. Chen, Opt. Lett. 34, 1873 (2009).

    Article  Google Scholar 

  11. 11.

    D. Maestre, E. Herna, A. Cremades, M. Amati, and J. Piqueras, Cryst. Growth Des. 12, 2478 (2012).

    Article  Google Scholar 

  12. 12.

    S. Sambasivam, S.B. Kim, J.H. Jeong, B.C. Choi, K.T. Lim, S.S. Kim, and T.K. Song, Curr. Appl. Phys. 10, 1383 (2010).

    Article  Google Scholar 

  13. 13.

    Y. Zhai, Q. Zhao, Y. Han, M. Wang, and J. Yu, J. Mater. Sci.: Mater. Electron. 27, 677 (2016).

    Google Scholar 

  14. 14.

    J. Zhang, X. Ma, Q. Qin, L. Shi, J. Sun, M. Zhou, B. Liu, and Y. Wang, Mater. Chem. Phys. 136, 320 (2012).

    Article  Google Scholar 

  15. 15.

    C. Bouzidi, A. Moadhen, H. Elhouichet, and M. Oueslati, Appl. Phys. B Lasers Opt. 90, 465 (2008).

    Article  Google Scholar 

  16. 16.

    S. Bhaumik, S.K. Ray, and A.K. Das, Phys. Status Solidi A 210, 2146 (2013).

    Article  Google Scholar 

  17. 17.

    F.H. Aragón, J.A.H. Coaquira, P. Hidalgo, R. Cohen, L.C.C.M. Nagamine, S.W. Da Silva, P.C. Morais, and H.F. Brito, J. Nanoparticle Res. 15, 1341 (2013).

    Article  Google Scholar 

  18. 18.

    P. Van Tuan, L.T. Hieu, L.Q. Nga, N.D. Dung, N.N. Ha, and T.N. Khiem, Phys. B 501, 34 (2016).

    Article  Google Scholar 

  19. 19.

    K. Bouras, J.-L. Rehspringer, G. Schmerber, H. Rinnert, S. Colis, G. Ferblantier, M. Balestrieri, D. Ihiawakrim, A. Dinia, and A. Slaoui, J. Mater. Chem. C 2, 8235 (2014).

    Article  Google Scholar 

  20. 20.

    A.L. Patterson, Phys. Rev. 56, 978 (1939).

    Article  Google Scholar 

  21. 21.

    Y. Liu, W. Luo, H. Zhu, and X. Chen, J. Lumin. 131, 415 (2011).

    Article  Google Scholar 

  22. 22.

    T. Moon, S.-T. Hwang, D.-R. Jung, D. Son, C. Kim, J. Kim, M. Kang, and B. Park, J. Phys. Chem. C 111, 4164 (2007).

    Article  Google Scholar 

  23. 23.

    K.P. Gattu, K. Ghule, A.A. Kashale, V.B. Patil, D.M. Phase, R.S. Mane, S.H. Han, R. Sharma, and A.V. Ghule, RSC Adv. 5, 72849 (2015).

    Article  Google Scholar 

  24. 24.

    R. Bargougui, K. Omri, A. Mhemdi, and S. Ammar, Adv. Mater. Lett. 6, 816 (2015).

    Google Scholar 

  25. 25.

    A. Azam, S.S. Habib, N.A. Salah, and F. Ahmed, Int. J. Nanomedicine 8, 3875 (2013).

    Article  Google Scholar 

  26. 26.

    P.G. Kik, M.J.A. de Dood, K. Kikoin, and A. Polman, Appl. Phys. Lett. 70, 1721 (1997).

    Article  Google Scholar 

Download references

Acknowledgement

This research is financially supported by the application-oriented fundamental research program, Project No. ĐT.NCCB- ĐHU'D.2011-G/01 and the Project No. B2015-01-99.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tran Ngoc Khiem.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van Tuan, P., Hieu, L.T., Nga, L.Q. et al. Influence of Hydrothermal Temperature on the Optical Properties of Er-Doped SnO2 Nanoparticles. Journal of Elec Materi 46, 3341–3344 (2017). https://doi.org/10.1007/s11664-017-5388-x

Download citation

Keywords

  • SnO2:Er3+ nanoparticles
  • hydrothermal temperature
  • crystal structure
  • optical properties