Skip to main content
Log in

High-Temperature Thermoelectric Properties of Perovskite-Type Pr0.9Sr0.1Mn1−x Fe x O3 (0 ≤ x ≤ 1)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polycrystalline samples of Pr0.9Sr0.1Mn1−x Fe x O3 (0 ≤ x ≤ 1) have been synthesized using a conventional solid-state reaction method, and the crystal structure studied at room temperature. The magnetic susceptibility was measured from 5 K to 350 K. The electrical resistivity, Seebeck coefficient, and thermal conductivity were investigated as functions of temperature below 850 K. For all samples, the perovskite structure at room temperature exhibited orthorhombic Pbnm phase. While the Pr0.9Sr0.1MnO3 (x = 0) sample exhibited ferromagnetic-like ground state below T C = 145 K (Curie temperature), the ferromagnetic transition temperature T C decreased with increasing x. The Seebeck coefficient of the samples with 0 ≤ x ≤ 0.8 decreased with increasing temperature because of double-exchange interaction of Mn ions. In fact, the carrier type for x = 0 changed from hole-like to electron-like behavior above 800 K. On the other hand, the samples with x ≥ 0.9 showed large positive Seebeck coefficient over the entire temperature range, indicating that the low-spin state of Fe ions dominated the electronic structure for this x range. In particular, the sample with x = 1 exhibited p-type thermoelectric properties with relatively high Seebeck coefficient, moderate electrical resistivity, and low thermal conductivity. Thus, the sample with x = 1 showed power factor of 20 μW m−1 K−2 at 850 K leading to ZT of 0.024 at this temperature, indicating that hole-doped perovskite-type iron oxide is a good candidate high-temperature thermoelectric p-type oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

    Article  Google Scholar 

  2. Y. Miyazaki, K. Kudo, M. Akoshima, Y. Ono, Y. Koike, and T. Kajitani, Jpn. J. Appl. Phys. 39, L531 (2000).

    Article  Google Scholar 

  3. M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79, 1816 (1996).

    Article  Google Scholar 

  4. M. Yasukawa and N. Murayama, Mater. Sci. Eng. B 54, 64 (1998).

    Article  Google Scholar 

  5. M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, and H. Arai, J. Solid State Chem. 120, 105 (1995).

    Article  Google Scholar 

  6. R. Funahashi, S. Urata, K. Mizuno, T. Kouuchi, and M. Mikami, Appl. Phys. Lett. 85, 1036 (2004).

    Article  Google Scholar 

  7. R. Funahashi, M. Mikami, T. Mihara, S. Urata, and N. Ando, J. Appl. Phys. 99, 066117 (2006).

    Article  Google Scholar 

  8. S. Urata, R. Funahashi, T. Mihara, A. Kosuga, S. Sodeoka, and T. Tanaka, Int. J. Appl. Ceram. Technol. 4, 535 (2007).

    Article  Google Scholar 

  9. H. Nakatsugawa, M. Kubota, and M. Saito, Mater. Trans. 56, 864 (2015).

    Article  Google Scholar 

  10. S. Ohta, H. Ohta, and K. Koumoto, J. Ceram. Soc. Jpn. 114, 102 (2006).

    Article  Google Scholar 

  11. M. Iijima and N. Murayama, Proc. Int. Conf. Thermoelectr. ICT98, 598 (1998).

  12. K. Iwasaki, T. Ito, T. Nagasaki, Y. Arita, M. Yoshino, and T. Matsui, J. Solid State Chem. 181, 3145 (2008).

    Article  Google Scholar 

  13. W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B 62, 6869 (2000).

    Article  Google Scholar 

  14. L. Pi, C. Martin, A. Maignan, and B. Raveau, Phys. Rev. B 67, 024430 (2003).

    Article  Google Scholar 

  15. P.X. Thao, T. Tsuji, M. Hashida, and Y. Yamamura, J. Ceram. Soc. Jpn. 111, 544 (2003).

    Article  Google Scholar 

  16. B.T. Cong, T. Tsuji, P.X. Thao, P.Q. Thanh, and Y. Yamamura, Phys. B 352, 18 (2004).

    Article  Google Scholar 

  17. G. Xu, R. Funahashi, Q. Pu, B. Liu, R. Tao, G. Wang, and Z. Ding, Solid State Ionics 171, 147 (2004).

    Article  Google Scholar 

  18. M. Miclau, S. Hebert, R. Retoux, and C. Martin, J. Solid State Chem. 178, 1104 (2005).

    Article  Google Scholar 

  19. D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, and K. Koumoto, J. Appl. Phys. 100, 084911 (2006).

    Article  Google Scholar 

  20. L. Bocher, M.H. Aguirre, D. Logvinovich, A. Shikabko, R. Robert, M. Trottmann, and A. Weidenkaff, Inorg. Chem. 47, 8077 (2008).

    Article  Google Scholar 

  21. R. Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).

    Article  Google Scholar 

  22. A. Urishibara, Y. Morimoto, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).

    Article  Google Scholar 

  23. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  Google Scholar 

  24. A. Maignan, C. Martin, F. Damay, and B. Raveau, Phys. Rev. B 58, 2758 (1998).

    Article  Google Scholar 

  25. F. Izumi and K. Momma, Solid State Phenom. 130, 15 (2007).

    Article  Google Scholar 

  26. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).

    Article  Google Scholar 

  27. V.M. Goldschmidt, Naturwissenschaften 21, 477 (1926).

    Article  Google Scholar 

  28. I.D. Brown, Chem. Rev. 109, 6858 (2009).

    Article  Google Scholar 

  29. D. Emin and T. Holstein, Ann. Phys. 53, 439 (1969).

    Article  Google Scholar 

  30. I.G. Austin and N.F. Mott, Adv. Phys. 18, 41 (1969).

    Article  Google Scholar 

  31. L. Murawski, C.H. Chung, and J.D. Mackenzie, J. Non-cryst. Solids 32, 91 (1970).

    Article  Google Scholar 

  32. T.T.M. Palstra, A.P. Ramirez, S.-W. Cheong, B.R. Zegarski, P. Schiffer, and J. Zaanen, Phys. Rev. B56, 5104 (1997).

    Article  Google Scholar 

  33. R.R. Heikes and R.W. Ure, Thermoelectricity: Science and Engineering (New York/London: Interscience, 1961).

    Google Scholar 

Download references

Acknowledgements

This study was partly supported by MEXT KAKENHI (Grant No. 15K06479). The authors are very grateful to I. Ishikawa for his experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nakatsugawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakatsugawa, H., Saito, M. & Okamoto, Y. High-Temperature Thermoelectric Properties of Perovskite-Type Pr0.9Sr0.1Mn1−x Fe x O3 (0 ≤ x ≤ 1). J. Electron. Mater. 46, 3262–3272 (2017). https://doi.org/10.1007/s11664-017-5366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5366-3

Keywords

Navigation