Skip to main content
Log in

Flexoelectric Induced Caloric Effect in Truncated Pyramid Shaped Ba0.67Sr0.33TiO3 Ferroelectric Material

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Solid state refrigeration based on ferroelectric materials can potentially be competing in not-in-kind refrigeration technology. However, their functionality is currently limited to Curie temperatures. Through this article, authors have attempted to describe an unexplored component of the stress-driven caloric effect, obtainable beyond the Curie point. The phenomenon, termed as the flexocaloric effect (FCE), relies on inhomogeneous straining of the crystal lattice to induce polarization in centrosymmetric crystals (flexoelectricity). For this study, a truncated pyramid geometry was selected, and the dependence of sample height on caloric capacity was studied. A peak temperature change of 1.75 K (313 K) was estimated for Ba0.67Sr0.33TiO3 (BST) ceramics employing a truncated pyramid configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Qian, Y. Geng, Y. Wang, J. Ling, Y. Hwang, R. Radermacher, I. Takeuchi, and J. Cui, Int. J. Refrig. 64, 1 (2016).

    Article  Google Scholar 

  2. S. Qian, D. Nasuta, A. Rhoads, Y. Wang, Y. Geng, Y. Hwang, R. Radermacher, and I. Takeuchi, Int. J. Refrig. 62, 177 (2016).

    Article  Google Scholar 

  3. L. Manosa, A. Planes, and M. Acet, J. Mater. Chem. A 1, 4925 (2013).

    Article  Google Scholar 

  4. S. Fähler, U.K. Rößler, O. Kastner, J. Eckert, G. Eggeler, H. Emmerich, P. Entel, S. Müller, E. Quandt, and K. Albe, Adv. Eng. Mater. 14, 10 (2012).

    Article  Google Scholar 

  5. M. Schmidt, A. Schütze, and S. Seelecke, APL Mater. 4, 064107 (2016).

    Article  Google Scholar 

  6. J. Tušek, K. Engelbrecht, D. Eriksen, S. Dall’Olio, J. Tušek, and N. Pryds, Nat. Energy 1, 16134 (2016).

    Article  Google Scholar 

  7. J. Li, D. Zhang, S. Qin, T. Li, M. Wu, D. Wang, Y. Bai, and X. Lou, Acta Mater. 115, 58 (2016).

    Article  Google Scholar 

  8. Y. Liu, J.F. Scott, and B. Dkhil, Appl. Phys. Rev. 3, 031102 (2016).

    Article  Google Scholar 

  9. S. Patel, A. Chauhan, R. Vaish, and P. Thomas, Appl. Phys. Lett. 108, 072903 (2016).

    Article  Google Scholar 

  10. X. Moya, S. Kar-Narayan, and N.D. Mathur, Nat. Mater. 13, 439 (2014).

    Article  Google Scholar 

  11. Y. Yoshida, K. Yuse, D. Guyomar, J.-F. Capsal, and G. Sebald, Appl. Phys. Lett. 108, 242904 (2016).

    Article  Google Scholar 

  12. Z. Xie, G. Sebald, and D. Guyomar, Appl. Phys. Lett. 108, 041901 (2016).

    Article  Google Scholar 

  13. P.E. Phelan, V.A. Chiriac, and T.-Y. Tom Lee, IEEE Trans. Adv. Packag. 25, 356 (2002).

    Article  Google Scholar 

  14. J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, and I. Takeuchi, Appl. Phys. Lett. 101, 073904 (2012).

    Article  Google Scholar 

  15. X.Q. Liu, T.T. Chen, Y.J. Wu, and X.M. Chen, J. Am. Ceram. Soc. 96, 1021 (2013).

    Article  Google Scholar 

  16. X. Li, S.-G. Lu, X.-Z. Chen, H. Gu, X.-s. Qian, and Q. Zhang, J. Mater. Chem. C 1, 23 (2013).

    Article  Google Scholar 

  17. I. Starkov and A. Starkov, Int. J. Refrig. 37, 249 (2014).

    Article  Google Scholar 

  18. M.M. Vopson, J. Phys. D Appl. Phys. 46, 345304 (2013).

    Article  Google Scholar 

  19. X.S. Qian, H.J. Ye, Y.T. Zhang, H. Gu, X. Li, C. Randall, and Q. Zhang, Adv. Funct. Mater. 24, 1300 (2014).

    Article  Google Scholar 

  20. S. Patel, A. Chauhan, and R. Vaish, Appl. Phys. Lett. 107, 042902 (2015).

    Article  Google Scholar 

  21. S. Lisenkov, B. Mani, C.-M. Chang, J. Almand and I. Ponomareva, Phys. Rev. B, 87, 224101 (2013)

  22. A. Chauhan, S. Patel, and R. Vaish, Appl. Phys. Lett. 106, 172901 (2015).

    Article  Google Scholar 

  23. A. Chauhan, S. Patel, R. Vaish, and C. Bowen, MRS Energy Sustain. Rev. J. (2015). doi:10.1557/mre.2015.17.

    Google Scholar 

  24. P. Yudin and A. Tagantsev, Nanotechnology 24, 432001 (2013).

    Article  Google Scholar 

  25. W. Ma and L.E. Cross, Appl. Phys. Lett. 88, 2902 (2006).

    Google Scholar 

  26. P. Zubko, G. Catalan, and A.K. Tagantsev, Annu. Rev. Mater. Res. 43, 387 (2013).

    Article  Google Scholar 

  27. W. Ma and L.E. Cross, Appl. Phys. Lett. 78, 2920 (2001).

    Article  Google Scholar 

  28. J.Y. Fu, W. Zhu, N. Li, and L.E. Cross, J. Appl. Phys. 100, 024112 (2006).

    Article  Google Scholar 

  29. S. Baskaran, N. Ramachandran, X. He, S. Thiruvannamalai, H.J. Lee, H. Heo, Q. Chen, and J.Y. Fu, Phys. Lett. A 375, 2082 (2011).

    Article  Google Scholar 

  30. W. Ma, Phys. Status Solidi (B) 247, 213 (2010).

    Article  Google Scholar 

  31. X. Jiang, W. Huang, and S. Zhang, Nano Energy 2, 1079 (2013).

    Article  Google Scholar 

  32. A. Biancoli, C.M. Fancher, J.L. Jones, and D. Damjanovic, Nat. Mater. 14, 224 (2015).

    Article  Google Scholar 

  33. G. Bai, Z. Liu, Q. Xie, Y. Guo, W. Li, and X. Yan, AIP Adv. 5, 097117 (2015).

    Article  Google Scholar 

  34. H.-A. Chin, S. Mao, B.L. Visweswaran, K.K. Ohemeng, S. Wagner, P.K. Purohit and M.C. McAlpine, In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. (International Society for Optics and Photonics: 2015), 94390E.

  35. J. Scott, Annu. Rev. Mater. Res. 41, 229 (2011).

    Article  Google Scholar 

  36. M. Valant, Prog. Mater Sci. 57, 980 (2012).

    Article  Google Scholar 

  37. A. Chauhan, S. Patel, R. Vaish, and C. Bowen, Materials 8, 5439 (2015).

    Article  Google Scholar 

  38. W.D. Dong, P. Finkel, A. Amin, and C.S. Lynch, Appl. Phys. Lett. 100, 042903 (2012).

    Article  Google Scholar 

  39. J. Valadez, R. Sahul, E. Alberta, W. Hackenberger, and C. Lynch, J. Appl. Phys. 111, 024109 (2012).

    Article  Google Scholar 

  40. M. Marsilius, J. Frederick, W. Hu, X. Tan, T. Granzow, and P. Han, Adv. Funct. Mater. 22, 797 (2012).

    Article  Google Scholar 

  41. W. Chen and C.S. Lynch, Acta Mater. 46, 5303 (1998).

    Article  Google Scholar 

  42. S.C. Hwang, C.S. Lynch, and R.M. McMeeking, Acta Metall. Mater. 43, 2073 (1995).

    Article  Google Scholar 

  43. S. Patel, A. Chauhan, and R. Vaish, Mater. Res. Exp. 1, 025504 (2014).

    Article  Google Scholar 

  44. S. Patel, A. Chauhan, and R. Vaish, Energy Technol. 2, 480 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research Group No. RGP-1436-014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Vaish.

Additional information

Satyanarayan Patel and Aditya Chauhan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Chauhan, A., Madhar, .A. et al. Flexoelectric Induced Caloric Effect in Truncated Pyramid Shaped Ba0.67Sr0.33TiO3 Ferroelectric Material. J. Electron. Mater. 46, 4166–4171 (2017). https://doi.org/10.1007/s11664-017-5362-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5362-7

Keywords

Navigation