Skip to main content
Log in

Thermoelectric Micro-Refrigerator Based on Bismuth/Antimony Telluride

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectric micro-coolers based on bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) are important in many practical applications thanks to their compactness and fluid-free circulation. In this paper, we studied thermoelectric properties of bismuth/antimony telluride (Bi/SbTe) thin films prepared by the thermal co-evaporation method, which yielded among the best thermoelectric quality. Different co-evaporation conditions such as deposition flux ratio of materials and substrate temperature during deposition were investigated to optimize the thermoelectric figure␣of merit of these materials. Micron-size refrigerators were designed and fabricated using standard lithography and etching technique. A three-layer structure was introduced, including a p-type layer, an n-type layer and an aluminum layer. Next to the main cooler, a pair of smaller Bi/SbTe junctions was used as a thermocouple to directly measure electron temperature of the main device. Etching properties of the thermoelectric materials were investigated and optimized to support the fabrication process of the micro-refrigerator. We discuss our results and address possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.B. Satterthwaite and R.W. Ure Jr., Phys. Rev. 108, 1164 (1957).

    Article  Google Scholar 

  2. X. Yan, B. Poudel, Y. Ma, W.S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z.F. Ren, Nano Lett. 10, 3373 (2010).

    Article  Google Scholar 

  3. G.J. Snyder, J.R. Lim, C.K. Huang, and J.P. Fleurial, Nat. Mater. 2, 528 (2003).

    Article  Google Scholar 

  4. J.R. Lim, G.J. Snyder, C. K. Huang, J.A. Herman, M.A. Ryan, and J.P. Fleurial, in Proceedings of the 21st International Conference on Thermoelectrics, IEEE, Long Beach, CA (2002).

  5. W. Wang, F.J. Wei, F.Q. Huang, and J. Zhang, Microelectron. Eng. 77, 223 (2005).

    Article  Google Scholar 

  6. L.M. Goncalves, J.G. Rocha, C. Couto, P. Alpuim, G. Min, D.M. Rowe, and J.H. Correia, J. Micromech. Microeng. 17, S168 (2007).

    Article  Google Scholar 

  7. J.P. Carmo, L.M. Gonçalves, J.H. Correia, and I.E.E.E.T. Ind, Electron. 57, 861 (2010).

    Google Scholar 

  8. H. Bottner, in Proceedings of the Twenty-First International Conference on Thermoelectrics, ICT’02 (IEEE, 2002), p. 511.

  9. D.M. Rowe, ed., CRC Handbook of Thermoelectrics, (Boca Raton: CRC Press, 1995).

  10. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, and X. Yan, Science 320, 634 (2008).

    Article  Google Scholar 

  11. S.R. Brown, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, Chem. Mater. 18, 1873 (2006).

    Article  Google Scholar 

  12. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  Google Scholar 

  13. L.D. Hicks, T.C. Harman, X. Sun, and M.S. Dresselhaus, Phys. Rev. B 53, R10493 (1996).

    Article  Google Scholar 

  14. L.D. Hicks, T.C. Harman, and M.S. Dresselhaus, Appl. Phys. Lett. 63, 3230 (1993).

    Article  Google Scholar 

  15. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    Article  Google Scholar 

  16. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  Google Scholar 

  17. H. Zou, D.M. Rowe, and S.G.K. Williams, Thin Solid Films 408, 270 (2002).

    Article  Google Scholar 

  18. A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, E. Charles, and A. Boyer, Mater. Sci. Eng. B 64, 19 (1999).

    Article  Google Scholar 

  19. L.M. Gonçalves, The Deposition of Bi2Te3 and Sb2Te3 Thermoelectric Thin-Films by Thermal Co-evaporation and Applications in Energy Harvesting, (Boca Raton: CRC Press, 2012).

  20. H. Levinstein, J. Appl. Phys. 20, 306 (1949).

    Article  Google Scholar 

  21. L.J. van der Pauw, Philips Res. Rep. 13, 1 (1958).

    Google Scholar 

  22. J. Blatt, Thermoelectric Power of Metals, (Berlin: Springer Science & Business Media, 2012).

  23. C. Shafai and M.J. Brett, Can. J. Phys. 74, 139 (1996).

    Article  Google Scholar 

  24. K.R. Kirt, K. Gupta, and M. Wasilik, J. Microelectromech. S. 12, 761 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the National Foundation for Science and Technology Development through Grant Number 103.02-2015.79. Samples were fabricated and measured at the Nano and Energy Center and Faculty of Physics, VNU University of Science. We would like to thank Mr. Nguyen Minh Hieu, Nano and Energy Center and Dr. Pham Van Thanh, Faculty of Physics for their support in the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Quoc Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, L.T., Dang, T.H., Nguyen, T.T.T. et al. Thermoelectric Micro-Refrigerator Based on Bismuth/Antimony Telluride. J. Electron. Mater. 46, 3660–3666 (2017). https://doi.org/10.1007/s11664-017-5343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5343-x

Keywords

Navigation