Skip to main content
Log in

Synthesis of Ferrite Nickel Nano-particles and Its Role as a p-Dopant in the Improvement of Hole Injection of an Organic Light-Emitting Diode

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We fabricated an organometallic complex based on zinc ions using zinc complex as a fluorescent in organic light-emitting diodes (OLEDs). Also, the nano-particles of ferrite nickel were produced in a simple aqueous system prepared by mixing Ni (NO3)2, Fe (NO3)3 and deionized water solutions. The synthesized zinc bis (8-hydroxyquinoline) (Znq2) complex and NiFe2O4 nano-particles were characterized by using x-ray diffraction (XRD), ultraviolet–visible (UV–Vis), Fourier transform infrared spectroscopy (FT-IR) as well as photoluminescence spectroscopy analysis. Their energy level was also determined by some cyclic voltammetry (CV) measurements. The maximum green photoluminescence was observed at 565 nm. The nano-particles of ferrite nickel were utilized in preparation of OLEDs by blending of the magnetic nano-particles with PEDOT:PSS and Zn-complex solutions. The electrical and optical performance of prepared OLEDs with/without doped nano-particle was studied. The samples were configured into two structures: (1) Indium Tin Oxide (ITO)/ poly(3,4-ethylenedi-oxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/Znq2/(2-4-biphenylyl)-5-phenyl-oxadiazole (PBD)/aluminum (Al) and (2) ITO/PEDOT:PSS:NiFe2O4(NPs)/Znq2/PBD/Al. Obtained results showed that the current density and electroluminescence efficiency were increased and the turn-on voltage decreased (about 3 V) by using nano-particles into a PEDOT:PSS layer (Hole transport layer). Also, the electroluminescence efficiency was decreased by incorporating magnetic nano-particles into a Zn-complex layer (emissive layer). It was found that utilizing NiFe2O4 nano-particles caused an increase of hole-injection layer conductivity effectively and a decrease of the turn-on voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, A. Rizzo, R. Cingolani, and G. Gigli, Adv. Mater. 18, 2545 (2006).

    Article  Google Scholar 

  2. S. Haque, S. Koops, N. Tokmoldin, J. Durrant, J. Huang, D. Bradley, and E. Palomares, Adv. Mater. 19, 683 (2007).

    Article  Google Scholar 

  3. P.L. Taberna, S. Mitra, P. Poizot, P. Simon, and J.M. Tarascon, Nat. Mater. 5, 567 (2006).

    Article  Google Scholar 

  4. R. Shi, X. Liu, G. Gao, R. Yi, and G. Qiu, Alloys Compd. 485, 548 (2009).

    Article  Google Scholar 

  5. L.M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B.D. Stein, and B. Dragnea, Chem. Mater. 19, 3624 (2007).

    Article  Google Scholar 

  6. M. Younas, M. Nadeem, M. Atif, and R. Grossinger, J. Appl. Phys. 109, 093704 (2011).

    Article  Google Scholar 

  7. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, and C. Muthamizhchelvan, J. Alloys Compd. 563, 6 (2013).

    Article  Google Scholar 

  8. J. Kalinowski, M. Cocchi, D. Virgili, P. Di Marco, and V. Fattori, Chem. Phys. Lett. 380, 710 (2003).

    Article  Google Scholar 

  9. J.A. Gomez, F. NÄuesch, L. Zuppiroli, and C.F.O. Graeff, Synth. Met. 160, 317 (2010).

    Article  Google Scholar 

  10. T.D. Nguyen, Y. Sheng, J. Rybicki, G. Veeraraghavan, and M. Wohlgenannt, Mater. Chem. 17, 2001 (1995).

    Google Scholar 

  11. B.F. Ding, Y. Yao, Z.Y. Sun, C.Q. Wu, X.D. Gao, Z.J. Wang, X.M. Ding, W.C.H. Choy, and X.Y. Hou, Appl. Phys. Lett. 97, 163302 (2010).

    Article  Google Scholar 

  12. T. Shimada, Organic Light Emitting Diode---Material, Process, and Devices, chap. 12 (InTech, 2011), pp. 311–322.

  13. Y. Ohmori, H. Kajii, T. Sawatani, H. Ueta, and K. Yoshino, Thin Solid Films 393, 407 (2001).

    Article  Google Scholar 

  14. J.G. Mahakhode, B.M. Bahirwar, S.J. Dhoble, and S.V. Moharil, J. Proc. of ASID, New Delhi, pp. 237–239 (2006).

  15. M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, and A. Sironi, J. Am. Chem. Soc. 122, 5147 (2000).

    Article  Google Scholar 

  16. M. Colle, J. Gmeiner, W. Milius, H. Hillebrecht, and W. Brutting, Adv. Funct. Mater. 13, 108 (2003).

    Article  Google Scholar 

  17. A.I. Vogel, Text book of Quantitative Chemical Analysis, 5th ed. (New York: Longman, 1989).

  18. R. Suresh, P. Moganavally, and M. Deepa, Int. J. Chem. Tech. Res. 8, 113 (2015).

    Google Scholar 

  19. A. Pradeep and G. Chandrasekaran, Mater. Lett. 60, 371 (2006).

    Article  Google Scholar 

  20. N.J. Shirtcliffe, S. Thompson, E.S. O’Keefe, S. Appleton, and C.C. Perry, Mater. Res. Bull. 42, 281 (2007).

    Article  Google Scholar 

  21. M.R. Jafari, M. Janghouri, and Z. Shahedi, J. Electron. Mater. 46, 544 (2017).

    Article  Google Scholar 

  22. M. Janghouri, E. Mohajerani, M.M. Amini, E. Najafi, and H. Hosseini, J. Electron. Mater. 42, 2915 (2013).

  23. X. Bing-she, H. Yu-ying, W. Hua, Z. He-feng, L. Xuguang, and C. Ming-wei, Solid State Commun. 136, 318 (2005).

    Article  Google Scholar 

  24. X. Wang, M. Shao, and L. Liu, Synth. Methods 160, 718 (2010).

    Article  Google Scholar 

  25. X.B. Chen, Z. Gong, B.Ch. Zhou, X.W. Hu, Ch.J. Mao, J.M. Song, H.-L. Niu, and S.-Y. Zhang, Mater. Lett. 75, 155 (2012).

    Article  Google Scholar 

  26. L.S. Sapochak, F.E. Benincasa, R.S. Schofield, J.L. Baker, K.K.C. Riccio, D. Fogarty, H. Kohlmann, K.F. Ferris, and P.E. Burrows, J. Am. Chem. Soc. 124, 6119 (2002).

    Article  Google Scholar 

  27. T.A. Hopkins, K. Meerholz, S. Shaheen, M.L. Anderson, A. Schmidt, B. Kippelen, A.B. Padias, J.H.K. Hall, N. Peyghambarian, and N.R. Armstrong, Chem. Mater. 8, 344 (1996).

    Article  Google Scholar 

  28. M.M. El-Nahass, A.M. Farid, and A.A. Atta, J. Alloys Compds. 507, 112 (2010).

    Article  Google Scholar 

  29. Y. Kai, M. Moraita, N. Yasuka, and N. Kasai, Bull. Chem. Soc. Jpn 58, 1631 (1985).

    Article  Google Scholar 

  30. J.P. Phillips and J.F. Deye, Anal. Chim. Acta 17, 231 (1957).

    Article  Google Scholar 

  31. T. Gavrilko, R. Fedorovich, G. Dovbeshko, A. Marchenko, A. Naumovets, V. Nechytaylo, G. Puchkovska, L. Viduta, J. Baran, and H.J. Ratajczak, Mol. Struct. 704, 163 (2004).

    Article  Google Scholar 

  32. J.E. Tackett and D.T. Sawyer, Inorg. Chem. 3, 692 (1964).

    Article  Google Scholar 

  33. C. Engelter, G.E. Jackson, C.L. Knight, and D.A. Thornton, J. Mol. Struct. 213, 133 (1983).

    Article  Google Scholar 

  34. M. Braun, J. Gmeiner, M. Tzolov, M. Coelle, F.D. Meyer, W. Milius, H. Hillebrecht, O. Wendland, J.U. von Schűtz, and W. Brűtting, Chem. Phys. 114, 9625 (2001).

    Google Scholar 

  35. Y.K. Han and S.U. Lee, Chem. Phys. Lett. 366, 9 (2002).

    Article  Google Scholar 

  36. A. Curioni and W. Andreoni, IBM J. Res. Dev. 45, 101 (2001).

    Article  Google Scholar 

  37. M.M. Levichkova, J.J. Assa, H. Fröb, and K. Leo, Appl. Phys. Lett. 88, 201912 (2006).

    Article  Google Scholar 

  38. K. Singh, A. Kumar, R. Srivastava, P.S. Kadyan, and M.N. Kamalasanan, Opt. Mater. 34, 221 (2011).

    Article  Google Scholar 

  39. R.S. Ashraf, M. Shahid, E. Klemm, M. Al-Ibrahim, and S. Sensfuss, Macromol. Rapid Commun. 27, 145401 (2006).

    Article  Google Scholar 

  40. B.K. Pal and D.E. Ryan, Anal. Chim. Acta 47, 35 (1969).

    Article  Google Scholar 

  41. K. Soroka, R.S. Vithanage, D.A. Phillips, B. Walker, and P.K. Dasgupta, Anal. Chem. 59, 629 (1967).

    Article  Google Scholar 

  42. C. Chen and J.M. Shi, Coord. Chem. Rev. 171, 161 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noori, M., Jafari, M.R., Hosseini, S.M. et al. Synthesis of Ferrite Nickel Nano-particles and Its Role as a p-Dopant in the Improvement of Hole Injection of an Organic Light-Emitting Diode. J. Electron. Mater. 46, 4093–4099 (2017). https://doi.org/10.1007/s11664-017-5341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5341-z

Keywords

Navigation