Microstructure, Magnetism and Magnetic Field Induced-Strain in Er-Doped Co-Ni-Al Polycrystalline Alloy


A large magnetic field-induced strain (MFIS) was discovered in single-crystal alloys, whereas it is proven difficult for such apparent strain values to be obtained in polycrystalline alloys. In order for an apparent strain discovery to occur, the polycrystalline Co-Ni-Al system was doped by 0–1 at.% of Er and the effects of doping on microstructure, magnetism and MFIS were studied via scanning electron microscopy, x-ray diffraction, transmission electron microscopy and vibrating sample magnetometer in the present work. The microstructure of the alloy was a dual-phase microstructure, including the matrix and the γ phase. Following the Er doping, the γ phase was continuously coarsened, forming a network of precipitates surrounding the grains. Also, a Co-Er-rich intermetallic compound was formed in the Co-rich γ phase when the Er content exceeded 0.1 at.%. The martensitic transformation temperature has a decreasing tendency during the Er being doped from 0 at.% to 1 at.% and the martensitic structure of the sample is of the L10 type, forming twin grains in the (111) twinning plane. On the contrary, the magnetic properties were improved by Er doping, especially saturation magnetization and magneto-crystalline anisotropy constantly increased to 60.45 emu/g and 3.13 × 106 erg/cm3 when the Er content reached 1 at.%, respectively. Also, the strain recovery ratio (R s) of Co-Ni-Al-Er alloys can be enhanced by thermo-mechanical cycles and Er doping. At 5% of the total strain, the R s value exceeded 83% following thermo-mechanical cycles when the Er doping was 1 at.%. The strain in the applied magnetic field was increased by Er doping and an excess of 140 ppm of MFIS was obtained in the polycrystalline Co-Ni-Al-Er alloys.

This is a preview of subscription content, access via your institution.


  1. 1.

    E. Panchenko, Y. Chumlyakov, A. Eftifeeva, and H.J. Maier, Scr. Mater. 90, 10 (2014).

    Article  Google Scholar 

  2. 2.

    J. Li and J. Li, Mater. Lett. 68, 40 (2012).

    Article  Google Scholar 

  3. 3.

    V. Yamakov, J.D. Hochhalter, W.P. Leser, J.E. Warner, J.A. Newman, G.P.P. Pun, and Y. Mishin, J. Mater. Sci. 51, 1204 (2016).

    Article  Google Scholar 

  4. 4.

    H. Seiner, J. Kopecek, P. Sedlak, L. Bodnarova, M. Landa, P. Sedmak, and O. Heczko, Acta Mater. 61, 5869 (2013).

    Article  Google Scholar 

  5. 5.

    W. Maziarz, J. Dutkiewicz, L. Litynska-Dobrzynska, R. Santamarta, and E. Cesari, J. Microsc. 237, 374 (2010).

    Article  Google Scholar 

  6. 6.

    U. Gaitzsch, M. Potschke, S. Roth, B. Rellinghaus, and L. Schultz, Acta Mater. 57, 365 (2009).

    Article  Google Scholar 

  7. 7.

    J. Liu, H. Zheng, Y. Huang, M. Xia, and J. Li, Scripta Mater. 53, 29 (2005).

    Article  Google Scholar 

  8. 8.

    Y.P. Zhu, Y.L. Gu, and H.G. Liu, Mater. Sci. Eng., A 626, 474 (2015).

    Article  Google Scholar 

  9. 9.

    J. Ju, F. Xue, and H. Li, J. Iron. Steel Res. Int. 22, 858 (2015).

    Article  Google Scholar 

  10. 10.

    Y. Ge, N. Zarubova, O. Heczko, and S.P. Hannula, Acta Mater. 90, 151 (2015).

    Article  Google Scholar 

  11. 11.

    R.C. O’Handley, J. Appl. Phys. 83, 3263 (1998).

    Article  Google Scholar 

  12. 12.

    J. Ju, F. Xue, and L.X. Sun, Mater. Manuf. Process. 30, 637 (2015).

    Article  Google Scholar 

  13. 13.

    J. Ju, F. Xue, J. Zhou, J. Bai, and L.X. Sun, Mater. Sci. Eng., A 616, 196 (2014).

    Article  Google Scholar 

  14. 14.

    G.B.G. Stenning, G.J. Bowden, P.A.J. de Groot, G. van der Laan, A.I. Figueroa, P. Bencok, P. Steadman, and T. Hesjedal, Phys. Rev. B 92, 104404 (2015).

    Article  Google Scholar 

  15. 15.

    X.G. Gao, C. Liu, D.Y. Tao, and Y.P. Zeng, J. Alloys Compd. 644, 694 (2015).

    Article  Google Scholar 

  16. 16.

    C.P. Wang, A.Q. Zheng, X.J. Liu, and K. Ishida, J. Alloys Compd. 478, 197 (2009).

    Article  Google Scholar 

  17. 17.

    E. Dogan, I. Karaman, N. Singh, A. Chivukula, H.S. Thawabi, and R. Arroyave, Acta Mater. 60, 3545 (2012).

    Article  Google Scholar 

  18. 18.

    S. Chatterjee, S. Giri, S. Majumdar, and S.K. De, Phys. B Condens. Matter. 403, 2572 (2008).

    Article  Google Scholar 

  19. 19.

    H. Morito, K. Oikawa, A. Fujita, K. Fukamichi, R. Kainuma, and K. Ishida, Scr. Mater. 63, 379 (2010).

    Article  Google Scholar 

  20. 20.

    N. Ono, A. Tsukahara, R. Kainuma, and K. Ishida, Mater. Sci. Eng., A 273, 420 (1999).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jia Ju.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ju, J., Lou, S., Yan, C. et al. Microstructure, Magnetism and Magnetic Field Induced-Strain in Er-Doped Co-Ni-Al Polycrystalline Alloy. Journal of Elec Materi 46, 2540–2547 (2017). https://doi.org/10.1007/s11664-017-5339-6

Download citation


  • Martensite
  • intermetallics
  • magnetic properties
  • shape memory effect
  • magnetic field-induced strain