Electrocaloric Study Effect in the Relaxor Ferroelectric Ceramic 0.9(0.75PMN-0.25PT)-0.1PS


This work is meant to study the electrocaloric effect in 0.9(0.75Pb(Mg1/3 Nb2/3)O3-0.25PbTiO3)-0.1PbSnO3 (0.9(PMN-PT)-0.1PS) ferroelectric ceramics. The adiabatic temperature change (ΔT) of 0.9(PMN-PT)-0.1PS ceramic, due to the application or withdrawal of an electric field, were calculated through the thermodynamic relation. The temperature change increases with an increase in the applied electric field and reaches a maximum of 0.66 K in a 30 kV/cm electric field shift near the morphotropic phase boundary transition, ferroelectric–paraelectric, at 373 K; that is, the electrocaloric coefficient is 0.220 × 10−6 m K/V, this obtained value is at high temperature, which limits its potential as the next generation solid state cooling devices.

This is a preview of subscription content, log in to check access.


  1. 1.

    A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, and N.D. Mathur, Science 311, 1270 (2006).

    Article  Google Scholar 

  2. 2.

    M.I. Mishchenko, V.K. Rosenbush, and N.N. Kiselev, Appl. Opt. 45, 4459 (2006).

    Article  Google Scholar 

  3. 3.

    B. Neese, B. Chu, S.G. Lu, Y. Wang, E. Furman, and Q.M. Zhang, Science 321, 821 (2008).

    Article  Google Scholar 

  4. 4.

    Y. Liu, J.F. Scott, and B. Dkhil, Appl. Phys. Rev. 3, 031102 (2016).

    Article  Google Scholar 

  5. 5.

    Y. Liu, J.F. Scott, and B. Dkhil, APL Mater. 4, 064109 (2016).

    Article  Google Scholar 

  6. 6.

    S.G. Lu and Q. Zhang, J. Adv. Dielectr. 2, 1230011 (2012).

    Article  Google Scholar 

  7. 7.

    W. Geng, Y. Liu, X. Meng, L. Bellaiche, J.F. Scott, B. Dkhil, and A. Jiang, Adv. Mater. 27, 3165 (2015).

    Article  Google Scholar 

  8. 8.

    G. Zhang, Z. Chen, B. Fan, J. Liu, M. Chen, M. Shen, P. Liu, Y. Zeng, S. Jiang, and Q. Wang, APL Mater. 4, 064103 (2016).

    Article  Google Scholar 

  9. 9.

    S. Patel, P. Sharma, and R. Vaish, Phase Transit. 89, 1062 (2016).

    Article  Google Scholar 

  10. 10.

    G. Zhang, X. Zhang, H. Huang, J. Wang, Q. Li, L.-Q. Chen, and Q. Wang, Adv. Mater. 28, 4811 (2016).

    Article  Google Scholar 

  11. 11.

    M.A. Hamad, J. Adv. Ceram. 2, 308 (2013).

    Article  Google Scholar 

  12. 12.

    J.-P. Maria, W. Hackenberger, and S. Trolier-McKinstry, J. Appl. Phys. 84, 5147 (1998).

    Article  Google Scholar 

  13. 13.

    A. Laha and S.B. Krupanidhi, Mater. Sci. Eng. B 98, 204 (2003).

    Article  Google Scholar 

  14. 14.

    Z. Kighelman, D. Damjanovic, and N. Setter, J. Appl. Phys. 90, 4682 (2001).

    Article  Google Scholar 

  15. 15.

    L. Luo, H. Chen, Y. Zhu, W. Li, H. Luo, and Y. Zhang, J. Alloys Compd. 509, 8149 (2011).

    Article  Google Scholar 

  16. 16.

    G. Ramesh, M.S. Ramachandra Rao, V. Sivasubramanian, and V. Subramanian, J. Alloys Compd. 663, 444 (2016).

    Article  Google Scholar 

  17. 17.

    Z. Jiwei, S. Bo, Z. Liangying, and Y. Xi, Mater. Chem. Phys. 64, 1 (2000).

    Article  Google Scholar 

  18. 18.

    R. Skulski, P. Wawrzała, K. Cwikiel, and D. Bochenek, J. Intell. Mater. Syst. Struct. 18, 1049 (2007).

    Article  Google Scholar 

  19. 19.

    R. Skulski, D. Bochenek, and P. Wawrzała, Arch. Metall. Mater. 56, 1051 (2011).

    Google Scholar 

  20. 20.

    G. Akcay, S.P. Alpay, G.A. Rossetti, and J.F. Scott, J. Appl. Phys. 103, 024104 (2008).

    Article  Google Scholar 

  21. 21.

    S.G. Lu, B. Rozic, Q.M. Zhang, Z. Kutnjak, and R. Pirc, Appl. Phys. A 107, 559 (2012).

    Article  Google Scholar 

  22. 22.

    A.S. Mischenko, Q. Zhang, R.W. Whatmore, J.F. Scott, and N.D. Mathur, Appl. Phys. Lett. 89, 242912 (2006).

    Article  Google Scholar 

  23. 23.

    S.G. Lu and Q.M. Zhang, Adv. Mater. 21, 1983 (2009).

    Article  Google Scholar 

  24. 24.

    J.H. Qiu, X.-Q. Wang, N.-Y. Yuan, and J.-N. Ding, Commun. Theor. Phys. 64, 113 (2015).

    Article  Google Scholar 

  25. 25.

    G. Sebald, S. Pruvost, L. Seveyrat, L. Lebrun, D. Guyomar, and B. Guiffard, J. Eur. Ceram. Soc. 27, 4021 (2007).

    Article  Google Scholar 

  26. 26.

    I. Kriaa, N. Abdelmoula, A. Maalej, and H. Khemakhem, J. Electron. Mater. 44, 4852 (2015).

    Article  Google Scholar 

  27. 27.

    B. Rožič, M. Kosec, H. Uršič, J. Holc, B. Malič, Q.M. Zhang, R. Blinc, R. Pirc, and Z. Kutnjak, J. Appl. Phys. 110, 064118 (2011).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Issa Kriaa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kriaa, I., Maalej, A. & Khemakhem, H. Electrocaloric Study Effect in the Relaxor Ferroelectric Ceramic 0.9(0.75PMN-0.25PT)-0.1PS. Journal of Elec Materi 46, 2529–2532 (2017). https://doi.org/10.1007/s11664-017-5336-9

Download citation


  • Ferroelectric
  • relaxor
  • pyroelectric
  • electrocaloric