Skip to main content

Advertisement

Log in

Thickness Dependence of Photovoltaic Effect in BiFeO3 Thin Films Based on Asymmetric Structures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

BiFeO3 (BFO) thin films with different layers were deposited on Pt/Ti/SiO2/Si substrates via the sol–gel method, and the effect of nonuniform electric field formed by asymmetry electrodes on the photovoltaic properties has been investigated through experimental approaches. The Au/BFO/Pt heterostructures show 1.3 V open-circuit voltages and ∼0.242% photovoltaic power conversion efficiency when illuminated under sunlight (AM 1.5), this high efficiency is at least one order of magnitude larger than many other values thus far reported for BFO-based devices prepared by the spin coated method. The film layer dependence of the photovoltaic effect suggests that the large open-circuit voltage and high efficiency are contributed by both the ferroelectric polarization and the asymmetric structures formed by top and bottom electrodes. Theoretical analysis indicates that the efficiency may be further significantly improved by increasing the number of film layers and the nonuniform depolarization field, implying potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ginley, M.A. Green, and R. Collins, MRS Bull. 33, 355 (2008).

    Article  Google Scholar 

  2. I. Gur, N.A. Fromer, M.L. Geier, and A.P. Alivisatos, Science 310, 462 (2005).

    Article  Google Scholar 

  3. B. O’Regan and M. Grätzel, Nat. (Lond.) 353, 737 (1991).

    Article  Google Scholar 

  4. P.S. Brody and F. Crowne, J. Electron. Mater. 4, 955 (1975).

    Article  Google Scholar 

  5. R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, H.R. Zhang, J.R. Sun, and B.G. Shen, Sci. Rep. 6, 20330 (2016).

    Article  Google Scholar 

  6. J.J. Zhang, X.D. Su, M.R. Shen, Z.H. Dai, L.J. Zhang, X.Y. He, W.X. Cheng, M.Y. Cao, and G.F. Zou, Sci. Rep. 3, 2109 (2013).

    Google Scholar 

  7. B. Kang, B.K. Rhee, G.T. Joo, S. Lee, and K.S. Lim, Opt. Commun. 266, 203 (2006).

    Article  Google Scholar 

  8. W.H. Jiang, W. Cai, Z.B. Lin, and C.L. Fu, Mater. Res. Bull. 48, 3092 (2013).

    Article  Google Scholar 

  9. D.W. Cao, C.Y. Wang, F.G. Zheng, W. Dong, L. Fang, and M.R. Shen, Nano Lett. 12, 2803 (2012).

    Article  Google Scholar 

  10. J.M. Park, S.S. Won, C.W. Ahn, and I.W. Kim, J. Am. Ceram. Soc. 96, 146 (2013).

    Article  Google Scholar 

  11. D.W. Cao, H. Zhang, L. Fang, W. Dong, F.G. Zheng, and M.R. Shen, Mater. Chem. Phys. 129, 783 (2011).

    Article  Google Scholar 

  12. G.H. Zhang, H. Wu, G.B. Li, Q.Z. Huang, C.Y. Yang, F.Q. Huang, F.H. Liao, and J.H. Lin, Sci. Rep. 3, 1265 (2013).

    Google Scholar 

  13. I. Grinberg, D.V. West, M. Torres, G.Y. Gou, D.M. Stein, L.Y. Wu, G.N. Chen, E.M. Gallo, A.R. Akbashev, P.K. Davies, J.E. Spanier, and A.M. Rappe, Nature 503, 509 (2013).

    Article  Google Scholar 

  14. V. Kothai, R. Prasath Babu, and R. Ranjan, J. Appl. Phys. 114, 114102 (2013).

    Article  Google Scholar 

  15. R.L. Gao, H.W. Yang, C.L. Fu, W. Cai, G. Chen, X.L. Deng, J.R. Sun, Y.G. Zhao, and B.G. Shen, J. Alloy. Compd. 624, 8 (2015).

    Google Scholar 

  16. J.H. Sung, W.M. Lee, J.H. Lee, K. Chu, D. Lee, X. Moya, N.D. Mathur, C.H. Yang, J.H. Park, and M.H. Jo, NPG Asia Mater. 5, e38 (2013).

    Article  Google Scholar 

  17. R.L. Gao, H.W. Yang, Y.S. Chen, J.R. Sun, Y.G. Zhao, and B.G. Shen, J. Alloy. Compd. 591, 346 (2014).

    Article  Google Scholar 

  18. Y.B. Yuan, Z.G. Xiao, B. Yang, and J.S. Huang, J. Mater. Chem. A. 17, 6027 (2014).

    Article  Google Scholar 

  19. R.L. Gao, H.W. Yang, J.R. Sun, Y.G. Zhao, and B.G. Shen, Appl. Phys. Lett. 104, 031906 (2014).

    Article  Google Scholar 

  20. S.Y. Yang, J. Seidel, S.J. Byrnes, P. Shafer, C.H. Yang, M.D. Rossell, P. Yu, Y.H. Chu, J.F. Scott, J.W. Ager III, L.W. Martin, and R. Ramesh, Nat. Nanotechnol. 5, 143 (2010).

    Article  Google Scholar 

  21. A. Bhatnagar, A.R. Chaudhuri, Y.H. Kim, D. Hesse, and M. Alexe, Nat. Commun. 4, 2835 (2013).

    Article  Google Scholar 

  22. T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, and S.W. Cheong, Science 324, 63 (2009).

    Article  Google Scholar 

  23. S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.H. Chu, C.H. Yang, J.L. Musfeldt, D.G. Schlom, J.W. Ager, and R. Ramesh, Appl. Phys. Lett. 95, 062909 (2009).

    Article  Google Scholar 

  24. X.L. Yang, X.D. Su, M.R. Shen, F.G. Zheng, Y. Xin, L. Zhang, M.C. Hua, Y.J. Chen, and V.G. Harris, Adv. Mater. 24, 1202 (2012).

    Article  Google Scholar 

  25. M. Alexe and D. Hesse, Nat. Commun. 2, 256 (2011).

    Article  Google Scholar 

  26. W. Cai, C.L. Fu, R.L. Gao, W.H. Jiang, X.L. Deng, and G. Chen, J. Alloy. Compd. 617, 240 (2014).

    Article  Google Scholar 

  27. W. Cai, C.L. Fu, R.L. Gao, W.H. Jiang, X.L. Deng, and G. Chen, Mater. Sci. Forum 815, 135 (2015).

    Article  Google Scholar 

  28. Z.B. Lin, W. Cai, W.H. Jiang, C.L. Fu, C. Li, and Y.X. Song, Ceram. Int. 39, 8729 (2013).

    Article  Google Scholar 

  29. C.M. Hung, C.S. Tu, Z.R. Xu, L.Y. Chang, V.H. Schmidt, R.R. Chien, and W.C. Chang, J. Appl. Phys. 115, 17D901 (2014).

    Article  Google Scholar 

  30. W. Cai, C.L. Fu, J.C. Gao, and H.Q. Chen, J. Alloy. Compd. 480, 870 (2009).

    Article  Google Scholar 

  31. W. Cai, C.L. Fu, W.G. Hu, G. Chen, and X.L. Deng, J. Alloy. Compd. 554, 64 (2013).

    Article  Google Scholar 

  32. K. Yao, B.K. Gan, M. Chen, and S. Shannigrahi, Appl. Phys. Lett. 87, 212906 (2005).

    Article  Google Scholar 

  33. V.M. Fridkin, Crystallogr. Rep. 46, 654 (2001).

    Article  Google Scholar 

  34. M. Qin, K. Yao, and Y.C. Liang, J. Appl. Phys. 101, 014104 (2007).

    Article  Google Scholar 

  35. L. Pintilie, I. Vrejoiu, G.L. Rhun, and M. Alexe, J. Appl. Phys. 101, 064109 (2007).

    Article  Google Scholar 

  36. M. Ichiki, H. Furue, T. Kobayashi, R. Maeda, Y. Morikawa, T. Nakada, and K. Nonaka, Appl. Phys. Lett. 87, 222903 (2005).

    Article  Google Scholar 

  37. R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, and X.L. Cao, Mater. Res. Bull. 84, 93 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The present work has been supported by the National Natural Science Foundation of China (Grant Nos. 51372283, 51402031, 61404018), the Natural Science Foundation of Chongqing (CSTC2015jcyjA50003, CSTC2015jcyjA50015, CSTC2016jcyjA0175, CSTC2016jcyjA0349), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1501310, KJ1501318), the Program for Innovation Teams in University of Chongqing, China (Grant No. CXTDX201601032), the Foundation of Chongqing University of Science & Technology (CK2015B05, CK2015Z13), and the cooperative project of the academician workstation of Chongqing University of Science & Technology (CKYS2014Z01, CKYS2014Z03, CKYS2014Y04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongli Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Fu, C., Cai, W. et al. Thickness Dependence of Photovoltaic Effect in BiFeO3 Thin Films Based on Asymmetric Structures. J. Electron. Mater. 46, 2373–2378 (2017). https://doi.org/10.1007/s11664-017-5292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5292-4

Keywords

Navigation