Skip to main content
Log in

In Situ Oxidation of GaN Layer and Its Effect on Structural Properties of Ga2O3 Films Grown by Plasma-Assisted Molecular Beam Epitaxy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Plasma-assisted molecular beam epitaxy (PAMBE) was used to grow Ga2O3 films on oxidized GaN layers on nitrided sapphire substrates. The GaN layer was grown by PAMBE, and the in situ oxidation of the GaN layer was achieved through exposure to oxygen plasma, which resulted in the formation of monoclinic β-Ga2O3. Crystalline monoclinic β-Ga2O3 films were grown on the GaN layers, with and without oxidation. The orientation relationships were [\(11\overline{2} 0\)] Al2O3//[\(1\overline{1} 00\)] AlN//[\(1\overline{1} 00\)] GaN//[102] β-Ga2O3 and [\(1\overline{1} 00\)] Al2O3//[\(11\overline{2} 0\)] AlN//[\(11\overline{2} 0\)] GaN//[010] β-Ga2O3. The grown β-Ga2O3 films were not single-crystalline but showed rotational domains along the growth direction with three variations, which resulted in six-fold rotational symmetry instead of two-fold rotational symmetry. The surface roughness of the grown β-Ga2O3 film was closely reflected to that of as-grown GaN and oxidized GaN. By analyzing the x-ray omega rocking curves for the on-axis (\(\overline{2} 01\)) and off-axis (002) reflections, it was concluded that rotational domains dominantly affected the crystal quality of the β-Ga2O3 films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Phys. Status Solidi 211, 21 (2014).

    Article  Google Scholar 

  2. X. Shen, Y. Zhu, T. Song, S.-T. Lee, and B. Sun, Appl. Phys. Lett. 103, 013504 (2013).

    Article  Google Scholar 

  3. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett. 100, 013504 (2012).

    Article  Google Scholar 

  4. N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, Appl. Phys. Lett. 70, 3561 (1997).

    Article  Google Scholar 

  5. M. Orita, H. Ohta, M. Hirano, and H. Hosono, Appl. Phys. Lett. 77, 4166 (2000).

    Article  Google Scholar 

  6. K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura, M. Hirano, and H. Hosono, Appl. Phys. Lett. 88, 092106 (2006).

    Article  Google Scholar 

  7. Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, Appl. Phys. Lett. 90, 031912 (2007).

    Article  Google Scholar 

  8. R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai, and S. Ohira, Appl. Phys. Lett. 94, 222102 (2009).

    Article  Google Scholar 

  9. T. Oshima, T. Okuno, and S. Fujita, Jpn. J. Appl. Phys. 46, 7217–7220 (2007).

    Article  Google Scholar 

  10. D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, Opt. Mater. Express 4, 415 (2014).

    Article  Google Scholar 

  11. S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, and I. Tanaka, J. Phys. Condens. Matter 19, 346211 (2007).

    Article  Google Scholar 

  12. S. Geller, J. Chem. Phys. 33, 676 (1960).

    Article  Google Scholar 

  13. G.A. Battiston, R. Gerbasi, M. Porchia, R. Bertoncello, and F. Caccavale, Thin Solid Films 279, 115 (1996).

    Article  Google Scholar 

  14. H. Tippins, Phys. Rev. 140, A316 (1965).

    Article  Google Scholar 

  15. R. Roy, V.G. Hill, and E.F. Obson, J. Am. Chem. Soc. 74, 719 (1952).

    Article  Google Scholar 

  16. E.G. Víllora, K. Shimamura, and K. Kitamura, Appl. Phys. Lett. 88, 031105 (2006).

    Article  Google Scholar 

  17. S. Nakagomi, Y. Kokubun, and B. Sapphire, J. Cryst. Growth 349, 12 (2012).

    Article  Google Scholar 

  18. F.B. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q.X. Guo, J. Cryst. Growth 387, 96 (2014).

    Article  Google Scholar 

  19. V. Gottschalch, K. Mergenthaler, G. Wagner, J. Bauer, H. Paetzelt, C. Sturm, and U. Teschner, Phys. Status Solidi A 249, 243 (2009).

    Article  Google Scholar 

  20. L. Kong, C. Luan, W. Mi, and Y. Lv, Thin Solid Films 520, 4270 (2012).

    Article  Google Scholar 

  21. W. Mi, J. Ma, Z. Zhu, C. Luan, Y. Lv, and H. Xiao, J. Cryst. Growth 354, 93 (2012).

    Article  Google Scholar 

  22. S. Nakagomi, S. Kubo, and Y. Kokubun, J. Cryst. Growth 445, 73 (2016).

    Article  Google Scholar 

  23. W. Mi, C. Luan, Z. Li, C. Zhao, H. Xiao, and J. Ma, Mater. Lett. 107, 83 (2013).

    Article  Google Scholar 

  24. W. Wei, Z. Qin, S. Zhao, F. Liu, S. Fan, J. Zheng, and G. Zhang, Mater. Sci. Semicond. Process. 15, 578 (2012).

    Article  Google Scholar 

  25. L.M. Lin, Y. Luo, P.T. Lai, and K. May, Thin Solid Films 515, 2111 (2006).

    Article  Google Scholar 

  26. Y. Oshima, E.G. Víllora, Y. Matsushita, S. Yamamoto, and K. Shimamura, J. Appl. Phys. 118, 085301 (2016).

    Article  Google Scholar 

  27. S. Lee, J. Hwang, J. Kim, S. Jeong, C. Cho, and S. Lee, Appl. Phys. Lett. 89, 182906 (2006).

    Article  Google Scholar 

  28. S. Nakagomi and Y. Kokubun, Phys. Status Solidi B 253, 1217 (2016).

    Article  Google Scholar 

  29. S.C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, J. Appl. Phys. 87, 965 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Ku Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo, T.S., Le, D.D., Tran, D.K. et al. In Situ Oxidation of GaN Layer and Its Effect on Structural Properties of Ga2O3 Films Grown by Plasma-Assisted Molecular Beam Epitaxy. J. Electron. Mater. 46, 3499–3506 (2017). https://doi.org/10.1007/s11664-017-5286-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5286-2

Keywords

Navigation