Skip to main content

Enhanced Flexible Thermoelectric Generators Based on Oxide–Metal Composite Materials

Abstract

The thermoelectric performance of flexible thermoelectric generator stripes was investigated in terms of different material combinations. The thermoelectric generators were constructed using Cu-Ni-Mn alloy as n-type legs while varying the p-type leg material by including a metallic silver phase and an oxidic copper phase. For the synthesis of \(\mathrm {Ca_3Co_4O_{9}}\)/CuO/Ag ceramic-based composite materials, silver and the copper were added to the sol–gel batches in the form of nitrates. For both additional elements, the isothermal specific electronic conductivity increases with increasing amounts of Ag and CuO in the samples. The amounts for Ag and Cu were 0 mol.%, 2 mol.%, 5 mol.%, 10 mol.%, and 20 mol.%. The phases were confirmed by x-ray diffraction. Furthermore, secondary electron microscopy including energy dispersive x-ray spectroscopy were processed in the scanning electron microscope and the transmission electron microscope. For each p-type material, the data for the thermoelectric parameters, isothermal specific electronic conductivity \(\sigma\) and the Seebeck coefficient \(\alpha\), were determined. The p-type material with a content of 5 mol.% Ag and Cu exhibited a local maximum of the power factor and led to the generator with the highest electric power output \(P_\mathrm{el}\).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. Fuchs, Graduate Texts in physics,Type="Italic"> 2nd edn. Springer, Berlin (2010)

    Google Scholar 

  2. 2.

    H. Fuchs, EHS, 1(3–4), 253 (2014).

    Google Scholar 

  3. 3.

    A. Feldhoff EHS, 2(1), 5 (2015).

    Google Scholar 

  4. 4.

    A. Feldhoff and B. Geppert, EHS, 2(1–2), 69 (2014).

    Google Scholar 

  5. 5.

    B. Geppert, D. Groeneveld, V. Loboda, A. Korotkov, and A. Feldhoff, EHS, 10, 689 (2008).

    Google Scholar 

  6. 6.

    A. Feldhoff, M. Arnold, J. Martynczuk, T. Gesing, and H. Wang, Solid State Sci., 10, 689 (2008).

    Article  Google Scholar 

  7. 7.

    B. Geppert and A. Feldhoff, EHS, 2, 1 (2015).

    Article  Google Scholar 

  8. 8.

    G. Min and D. Rowe, Meas. Sci. Technol., 12, 1261 (2001).

    Article  Google Scholar 

  9. 9.

    D. Narducci, Appl. Phys. Lett., 99, 102104–1 (2011).

    Article  Google Scholar 

  10. 10.

    M. Shikano and R. Funahashi, Appl. Phys. Lett., 82(12), 1851 (2003).

    Article  Google Scholar 

  11. 11.

    J. Fergus, J. Eur. Ceram. Soc., 32, 525 (2011).

    Article  Google Scholar 

  12. 12.

    S. Lambert, H. Leligny, and D. Gebrille, J. Solid State Chem., 160, 322 (2001).

    Article  Google Scholar 

  13. 13.

    L. Han, Y. Jiang, S. Li, H. Su, X. Qin, T. Han, H. Zhong, L. Chen, and D. Yu, J. Alloys Compd., 509, 8970 (2011).

    Article  Google Scholar 

  14. 14.

    Y. Wang, Y. Sui, J. Cheng, X. Wang, and W. Su, J. Phys. D: Appl. Phys., 41, 1 (2008).

    Article  Google Scholar 

  15. 15.

    H. Franke and K. Juhl, Kupfer in der Elektrotechnik-Kabel und Leitungen, 1st edn. Breuerdruck, Korschenbroich (2010).

    Google Scholar 

  16. 16.

    S. Indris, Perkolation von Grenzflächen in nanokristallinen kera-mi-schen Kompositen - Li-Ionenleitfähigkeit und \({}^{7}\)Li-NMR-Relaxation, Dissertation (Cuvilier Verlag) (2001)

  17. 17.

    G. Jonker, Philips Res. Rep., 23(2), 8 (1968).

    Google Scholar 

  18. 18.

    Q. Zhu, E. Hopper, B. Ingram, and T. Mason, J. Am. Ceram. Soc., 94(1), 187 (2011).

    Article  Google Scholar 

  19. 19.

    O. Jankovsky, D. Sedmidubsky, Z. Sofer, P. Simek, and J. Hejtmanek, Ceram. Silik., 56(2), 139 (2012).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benjamin Geppert.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geppert, B., Brittner, A., Helmich, L. et al. Enhanced Flexible Thermoelectric Generators Based on Oxide–Metal Composite Materials. Journal of Elec Materi 46, 2356–2365 (2017). https://doi.org/10.1007/s11664-017-5281-7

Download citation

Keywords

  • Flexible thermoelectric generators
  • composite materials
  • energy conversion
  • electric power output
  • conversion efficiency