Advertisement

Journal of Electronic Materials

, Volume 46, Issue 4, pp 2356–2365 | Cite as

Enhanced Flexible Thermoelectric Generators Based on Oxide–Metal Composite Materials

  • Benjamin Geppert
  • Artur Brittner
  • Lailah Helmich
  • Michael Bittner
  • Armin Feldhoff
Article
  • 154 Downloads

Abstract

The thermoelectric performance of flexible thermoelectric generator stripes was investigated in terms of different material combinations. The thermoelectric generators were constructed using Cu-Ni-Mn alloy as n-type legs while varying the p-type leg material by including a metallic silver phase and an oxidic copper phase. For the synthesis of \(\mathrm {Ca_3Co_4O_{9}}\)/CuO/Ag ceramic-based composite materials, silver and the copper were added to the sol–gel batches in the form of nitrates. For both additional elements, the isothermal specific electronic conductivity increases with increasing amounts of Ag and CuO in the samples. The amounts for Ag and Cu were 0 mol.%, 2 mol.%, 5 mol.%, 10 mol.%, and 20 mol.%. The phases were confirmed by x-ray diffraction. Furthermore, secondary electron microscopy including energy dispersive x-ray spectroscopy were processed in the scanning electron microscope and the transmission electron microscope. For each p-type material, the data for the thermoelectric parameters, isothermal specific electronic conductivity \(\sigma\) and the Seebeck coefficient \(\alpha\), were determined. The p-type material with a content of 5 mol.% Ag and Cu exhibited a local maximum of the power factor and led to the generator with the highest electric power output \(P_\mathrm{el}\).

Keywords

Flexible thermoelectric generators composite materials energy conversion electric power output conversion efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Fuchs, Graduate Texts in physics,Type="Italic"> 2nd edn. Springer, Berlin (2010)Google Scholar
  2. 2.
    H. Fuchs, EHS, 1(3–4), 253 (2014).Google Scholar
  3. 3.
    A. Feldhoff EHS, 2(1), 5 (2015).Google Scholar
  4. 4.
    A. Feldhoff and B. Geppert, EHS, 2(1–2), 69 (2014).Google Scholar
  5. 5.
    B. Geppert, D. Groeneveld, V. Loboda, A. Korotkov, and A. Feldhoff, EHS, 10, 689 (2008).Google Scholar
  6. 6.
    A. Feldhoff, M. Arnold, J. Martynczuk, T. Gesing, and H. Wang, Solid State Sci., 10, 689 (2008).CrossRefGoogle Scholar
  7. 7.
    B. Geppert and A. Feldhoff, EHS, 2, 1 (2015).CrossRefGoogle Scholar
  8. 8.
    G. Min and D. Rowe, Meas. Sci. Technol., 12, 1261 (2001).CrossRefGoogle Scholar
  9. 9.
    D. Narducci, Appl. Phys. Lett., 99, 102104–1 (2011).CrossRefGoogle Scholar
  10. 10.
    M. Shikano and R. Funahashi, Appl. Phys. Lett., 82(12), 1851 (2003).CrossRefGoogle Scholar
  11. 11.
    J. Fergus, J. Eur. Ceram. Soc., 32, 525 (2011).CrossRefGoogle Scholar
  12. 12.
    S. Lambert, H. Leligny, and D. Gebrille, J. Solid State Chem., 160, 322 (2001).CrossRefGoogle Scholar
  13. 13.
    L. Han, Y. Jiang, S. Li, H. Su, X. Qin, T. Han, H. Zhong, L. Chen, and D. Yu, J. Alloys Compd., 509, 8970 (2011).CrossRefGoogle Scholar
  14. 14.
    Y. Wang, Y. Sui, J. Cheng, X. Wang, and W. Su, J. Phys. D: Appl. Phys., 41, 1 (2008).CrossRefGoogle Scholar
  15. 15.
    H. Franke and K. Juhl, Kupfer in der Elektrotechnik-Kabel und Leitungen, 1st edn. Breuerdruck, Korschenbroich (2010).Google Scholar
  16. 16.
    S. Indris, Perkolation von Grenzflächen in nanokristallinen kera-mi-schen Kompositen - Li-Ionenleitfähigkeit und \({}^{7}\)Li-NMR-Relaxation, Dissertation (Cuvilier Verlag) (2001)Google Scholar
  17. 17.
    G. Jonker, Philips Res. Rep., 23(2), 8 (1968).Google Scholar
  18. 18.
    Q. Zhu, E. Hopper, B. Ingram, and T. Mason, J. Am. Ceram. Soc., 94(1), 187 (2011).CrossRefGoogle Scholar
  19. 19.
    O. Jankovsky, D. Sedmidubsky, Z. Sofer, P. Simek, and J. Hejtmanek, Ceram. Silik., 56(2), 139 (2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Benjamin Geppert
    • 1
  • Artur Brittner
    • 1
  • Lailah Helmich
    • 1
  • Michael Bittner
    • 1
  • Armin Feldhoff
    • 1
  1. 1.Institute of Physical Chemistry and ElectrochemistryLeibniz UniversitätHannoverGermany

Personalised recommendations