Skip to main content

Variations of Contact Resistance in Dual-Gated Monolayer Molybdenum Disulfide Transistors Depending on Gate Bias Selection


Monolayer molybdenum disulfide (MoS2) is considered an alternative two-dimensional material for high performance ultra-thin field-effect transistors. MoS2 is a triple atomic layer with a direct 1.8 eV bandgap. Bulk MoS2 has an additional indirect bandgap of 1.2 eV, which leads to high current on/off ratio around 108. Flakes of MoS2 can be obtained by mechanical exfoliation or grown by chemical vapor deposition. Intrinsic cut-off frequency of multilayer MoS2 transistor has reached 42 GHz. Chemical doping of MoS2 is challenging and results in reduction of contact resistance. This paper focuses on modeling of dual-gated monolayer MoS2 transistors with effective mobility of carriers varying from 0.6 cm2/V s to 750 cm2/V s. In agreement with experimental data, the model demonstrates that in back-gate bias devices, the contact resistance decreases almost exponentially with increasing gate bias, whereas in top-gate bias devices, the contact resistance stays invariant when varying gate bias.

This is a preview of subscription content, access via your institution.


  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigovieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  2. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  3. E. Cheng, S. Jiang, Y. Chen, Y. Li, N. Weiss, H. Cheng, H. Wu, Y. Huang, and X. Duan, Nat. Commun. 5, 5143 (2014).

    Article  Google Scholar 

  4. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nano 6, 147 (2011).

    Article  Google Scholar 

  5. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).

    Article  Google Scholar 

  6. C. Jiang, S.L. Rumyantsev, R. Samnakay, M.S. Shur, and A.A. Balandin, J. Appl. Phys. 117, 064301 (2015).

    Article  Google Scholar 

  7. S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011).

    Article  Google Scholar 

  8. F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan, and B.T. Jonker, Nano Lett. 13, 668 (2013).

    Article  Google Scholar 

  9. S. Butun, S. Tongay, and K. Aydin, Nano Lett. 15, 2700 (2015).

    Article  Google Scholar 

  10. H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.-J. Li, M. Dubey, J. Kong, and T. Palacios, Nano Lett. 12, 4674 (2012).

    Article  Google Scholar 

  11. N. Pour, Y. Anugrah, S. Wu, X. Xu, and S.J. Koester, Conference Digest, IEEE 71st Device Research Conference (2013).

  12. S.-J. Han, D. Reddy, G.D. Carpenter, A.D. Franklin, and K.A. Jenkins, ACS Nano 6, 5220 (2012).

    Article  Google Scholar 

  13. R.S. Muller and T.I. Kamins, Chapters 8–9, Device electronics for integrated circuits, 3rd ed. (New York: Wiley, 2003).

    Google Scholar 

  14. M. Cheli, P. Michetti, and G. Iannaccone, IEEE Trans. Electron Dev. 57, 1936 (2010).

    Article  Google Scholar 

  15. T.-Y. Kim, M. Amani, G.H. Ahn, Y. Song, A. Javey, S. Chung, and T. Lee, ACS Nano 10, 2819 (2016).

    Article  Google Scholar 

  16. S. Fregonese, M. Magallo, C. Maneux, H. Happy, and T. Zimmer, IEEE Trans. Nanotech. 12, 539 (2013).

    Article  Google Scholar 

  17. L. Liao, J. Bai, Y. Qu, Y.-C. Lin, Y. Li, Y. Huang, and X. Duan, Proc. Nat. Acad. Sci. 107, 6711 (2010).

    Article  Google Scholar 

  18. D. Lembke and A. Kis, ACS Nano 6, 10070 (2012).

    Article  Google Scholar 

  19. H. Liu, M. Si, S. Najmaei, A. Neal, Y. Du, P. Ajayan, J. Lou, and P. Ye, Nano Lett. 13, 2640 (2013).

    Article  Google Scholar 

  20. I. Popov, G. Seifert, and D. Tománek, Phys. Rev. Lett. 108, 156802 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to P. X. Tran.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tran, P.X. Variations of Contact Resistance in Dual-Gated Monolayer Molybdenum Disulfide Transistors Depending on Gate Bias Selection. J. Electron. Mater. 46, 3390–3395 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Molybdenum disulfide
  • monolayer MoS2
  • FET
  • MoS2 transistor model
  • contact resistance