Advertisement

Journal of Electronic Materials

, Volume 46, Issue 6, pp 3390–3395 | Cite as

Variations of Contact Resistance in Dual-Gated Monolayer Molybdenum Disulfide Transistors Depending on Gate Bias Selection

  • P. X. Tran
Article

Abstract

Monolayer molybdenum disulfide (MoS2) is considered an alternative two-dimensional material for high performance ultra-thin field-effect transistors. MoS2 is a triple atomic layer with a direct 1.8 eV bandgap. Bulk MoS2 has an additional indirect bandgap of 1.2 eV, which leads to high current on/off ratio around 108. Flakes of MoS2 can be obtained by mechanical exfoliation or grown by chemical vapor deposition. Intrinsic cut-off frequency of multilayer MoS2 transistor has reached 42 GHz. Chemical doping of MoS2 is challenging and results in reduction of contact resistance. This paper focuses on modeling of dual-gated monolayer MoS2 transistors with effective mobility of carriers varying from 0.6 cm2/V s to 750 cm2/V s. In agreement with experimental data, the model demonstrates that in back-gate bias devices, the contact resistance decreases almost exponentially with increasing gate bias, whereas in top-gate bias devices, the contact resistance stays invariant when varying gate bias.

Keywords

Molybdenum disulfide monolayer MoS2 FET MoS2 transistor model contact resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigovieva, and A.A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  2. 2.
    K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
  3. 3.
    E. Cheng, S. Jiang, Y. Chen, Y. Li, N. Weiss, H. Cheng, H. Wu, Y. Huang, and X. Duan, Nat. Commun. 5, 5143 (2014).CrossRefGoogle Scholar
  4. 4.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nano 6, 147 (2011).CrossRefGoogle Scholar
  5. 5.
    X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).CrossRefGoogle Scholar
  6. 6.
    C. Jiang, S.L. Rumyantsev, R. Samnakay, M.S. Shur, and A.A. Balandin, J. Appl. Phys. 117, 064301 (2015).CrossRefGoogle Scholar
  7. 7.
    S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011).CrossRefGoogle Scholar
  8. 8.
    F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan, and B.T. Jonker, Nano Lett. 13, 668 (2013).CrossRefGoogle Scholar
  9. 9.
    S. Butun, S. Tongay, and K. Aydin, Nano Lett. 15, 2700 (2015).CrossRefGoogle Scholar
  10. 10.
    H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.-J. Li, M. Dubey, J. Kong, and T. Palacios, Nano Lett. 12, 4674 (2012).CrossRefGoogle Scholar
  11. 11.
    N. Pour, Y. Anugrah, S. Wu, X. Xu, and S.J. Koester, Conference Digest, IEEE 71st Device Research Conference (2013).Google Scholar
  12. 12.
    S.-J. Han, D. Reddy, G.D. Carpenter, A.D. Franklin, and K.A. Jenkins, ACS Nano 6, 5220 (2012).CrossRefGoogle Scholar
  13. 13.
    R.S. Muller and T.I. Kamins, Chapters 8–9, Device electronics for integrated circuits, 3rd ed. (New York: Wiley, 2003).Google Scholar
  14. 14.
    M. Cheli, P. Michetti, and G. Iannaccone, IEEE Trans. Electron Dev. 57, 1936 (2010).CrossRefGoogle Scholar
  15. 15.
    T.-Y. Kim, M. Amani, G.H. Ahn, Y. Song, A. Javey, S. Chung, and T. Lee, ACS Nano 10, 2819 (2016).CrossRefGoogle Scholar
  16. 16.
    S. Fregonese, M. Magallo, C. Maneux, H. Happy, and T. Zimmer, IEEE Trans. Nanotech. 12, 539 (2013).CrossRefGoogle Scholar
  17. 17.
    L. Liao, J. Bai, Y. Qu, Y.-C. Lin, Y. Li, Y. Huang, and X. Duan, Proc. Nat. Acad. Sci. 107, 6711 (2010).CrossRefGoogle Scholar
  18. 18.
    D. Lembke and A. Kis, ACS Nano 6, 10070 (2012).CrossRefGoogle Scholar
  19. 19.
    H. Liu, M. Si, S. Najmaei, A. Neal, Y. Du, P. Ajayan, J. Lou, and P. Ye, Nano Lett. 13, 2640 (2013).CrossRefGoogle Scholar
  20. 20.
    I. Popov, G. Seifert, and D. Tománek, Phys. Rev. Lett. 108, 156802 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.School of Electrical EngineeringInternational UniversityHo Chi Minh CityVietnam

Personalised recommendations