Skip to main content
Log in

Nanostructure ZnFe2O4 with Bacillus subtilis for Detection of LPG at Low Temperature

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present study deals with the development of a chemical sensor for the detection of liquefied petroleum gas (LPG) at a low operating temperature using Zinc ferrite (ZnFe2O4)/Bacillus subtilis (B. subtilis) hybrid nanostructures. The nanostructure ZnFe2O4 and B. subtilis powder, taken in equal proportion was made into films using the spin coating technique. X-ray diffraction, thermal analysis, scanning electron microscopy, and transmission electron microscopy were used to study morphology, structure and crystallite size. The sensing properties of the hybrid structure were studied and excellent response was observed in the temperature range of 50–55°C for 400 ppm LPG, when compared to the individual components of the hybrid. The signal output of the proposed sensor were extremely stable for more than 30 days. This method proposes the usage of the biomolecule/metal oxide composites in electronics and helps to reduce the metal oxide usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Yamnzoe and N. Miura, IEEE Trans. Compon. Packag. Manuf. Technol. 18, 252 (1996).

    Article  Google Scholar 

  2. C. Pijolat, C. Pupier, M. Sauvan, G. Tournier, and R. Lalauze, Sens. Actuators, B 59, 195 (1999).

    Article  Google Scholar 

  3. J.S.G.D. Santas-Alves and R.F. Patier, Sens. Actuators, B 59, 69 (1999).

    Article  Google Scholar 

  4. C.C. Wang, A.A. Akbar, and M.J. Madou, J. Electroceram. 2, 273 (1998).

    Article  Google Scholar 

  5. V.R. Shinde, T.P. Gujar, and C.D. Lokhande, Sens. Actuators, B 120, 551 (2007).

    Article  Google Scholar 

  6. L. Satyanarayana, C.V. Gopal Reddy, S.V. Manorama, and V.J. Rao, Sens. Actuators, B 46, 1 (1998).

    Article  Google Scholar 

  7. B.-J. Kim, I.-G. Song, and J.-S. Kim, Electron. Mater. Lett. 10, 509 (2014).

    Article  Google Scholar 

  8. C.L. Wang, W.S. Hwang, K.M. Chang, H.H. Ko, C.S. His, H.H. Huang, and M.C. Wang, Int. J. Mol. Sci. 12, 935 (2011).

    Article  Google Scholar 

  9. B. Munge, S.K. Das, R. Ilagan, Z. Pendon, J. Yang, H.A. Frank, and J.F. Rusling, J. Am. Chem. Soc. 125, 12457 (2003).

    Article  Google Scholar 

  10. M.T. Giardi and E. Pace, Trends Biotechnol. 23, 257 (2005).

    Article  Google Scholar 

  11. X. Chen, L. Mahadevan, A. Driks, and O. Sahin, Nat. Nanotechnol. 9, 137 (2014).

    Article  Google Scholar 

  12. L. Sepunaru, I. Tsimberov, L. Forolov, C. Carmeli, I. Carmeli, and Y. Rosenwaks, Nano Lett. 9, 2751 (2009).

    Article  Google Scholar 

  13. D. Gerster, J. Reichert, H. Bi, J.V. Barth, S.M. Kaniber, A.W. Holleitner, I. Visoly-Fisher, S. Sergani, and I. Carmeli, Nat. Nanotechnol. 7, 673 (2012).

    Article  Google Scholar 

  14. K.K. Sadasivuni, D. Ponnamma, H.-U. Ko, H.C. Kim, L. Zhai, and J. Kim, Sens. Actuators, B 233, 633 (2016).

    Article  Google Scholar 

  15. T.-U. Kim, M.-G. Gang, J.-A. Kim, J.-H. Moon, D.-G. Kim, S.-H. Kim, H.-C. Ki, J.-h. Choi, and J.-H. Kim, Electron. Mater. Lett. 12, 224 (2016).

    Article  Google Scholar 

  16. D. Ponnamma, Q. Guo, I. Krupa, M.A.S.A. Al-Maadeed, K.T. Varughese, S. Thomas, and K.K. Sadasivuni, Phys. Chem. Chem. Phys. 17, 3954 (2016).

    Article  Google Scholar 

  17. N. Iftimie, E. Rezlescu, P.D. Popa, and N. Rezlescu, J. Optoelectron. Adv. Mater. 8, 101 (2006).

    Google Scholar 

  18. A. Sutka and G. Mezinskis, Front Mater. Sci. 6, 128 (2012).

    Article  Google Scholar 

  19. K.V. Rao and C.S. Sunandana, Synth. React. Inorg. Met-Org Nano-Metal Chem 38, 173 (2008).

    Google Scholar 

  20. M.M.A. Bradford, Anal. Biochem. 72, 248 (1976).

    Article  Google Scholar 

  21. A. Chowdhuri, V. Guptaa, and K. Sreenivas, Sens. Actuators, B 93, 572 (2003).

    Article  Google Scholar 

  22. S.K. Kumar, M. Castro, A. Saiter, L. Delbreilh, J.F. Feller, S. Thomas, and Y. Grohens, Mater. Let. 96, 109 (2013).

    Article  Google Scholar 

  23. K.V. Rao and C.S. Sunandana, J. Phys. Chem. Solids 69, 87 (2008).

    Article  Google Scholar 

  24. K.V. Rao and C.S. Sunandana, Solid State Commun. 148, 32 (2008).

    Article  Google Scholar 

  25. A.A.M. Farag, M. Cavas, F. Yakuphanoglu, and F.M. Amanullah, J. Alloys Compd. 509, 7900 (2011).

    Article  Google Scholar 

  26. D. Rathore, R. Kurchania, and R.K. Pandey, Sens. Actuators, A 199, 236 (2013).

    Article  Google Scholar 

  27. V.N. Mishra and R.P. Agarwal, Microelectron. J. 29, 861 (1998).

    Article  Google Scholar 

  28. Y.H. Kim, H. Kawamura, and M. Nawata, J. Mater. Sci. 32, 1665 (1997).

    Article  Google Scholar 

  29. D.S. Dhawale, D.P. Dubal, A.M. More, T.P. Gujar, and C.D. Lokhande, Sens. Actuators, B 147, 488–494 (2010).

    Article  Google Scholar 

  30. H.W. Shim, Y.H. Jin, S.D. Seo, S.H. Lee, and D. Wan, ACS Nano 5, 443 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalagadda Venkateswara Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goutham, S., Kumar, D.S., Sadasivuni, .K. et al. Nanostructure ZnFe2O4 with Bacillus subtilis for Detection of LPG at Low Temperature. J. Electron. Mater. 46, 2334–2339 (2017). https://doi.org/10.1007/s11664-016-5273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5273-z

Keywords

Navigation