Skip to main content
Log in

Optical and Compositional Properties of SiOx Films Deposited by HFCVD: Effect of the Hydrogen Flow

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, the effect of hydrogen flow and thermal annealing on the compositional and optical properties of non-stoichiometric silicon oxide (SiOx) films with embedded silicon nanocrystals is reported. The SiO x films are obtained by hot filament chemical vapor deposition technique at three different hydrogen flow levels, namely, 50 sccm, 100 sccm, and 150 sccm. The SiOx films are characterized by different techniques. It is found by x-ray photoelectron spectroscopy (XPS) that with increasing hydrogen flow, the SiOx films contain higher silicon (Si) concentration. When the hydrogen flow decreases, the absorption edge of the as-grown SiOx films, as obtained from the transmittance spectra, shifts from 300 nm to 500 nm, and this opens the possibility of band gap tuning. Increasing the hydrogen flow level in turn means that the SiOx films contain higher Si concentration, as confirmed by the XPS profile composition measured in the SiOx films. After thermal annealing, the SiOx films transmittance spectra showed a further shift of the absorption edge toward larger wavelengths. The Fourier transform infrared (FTIR) spectroscopy reveals film composition changes induced by the hydrogen flow variations. In addition, the FTIR spectra reveal the bands attributed to the hydrogen presence in the as-grown SiOx films. The bands become more intense with increasing hydrogen flow, but they rapidly disappear after the thermal annealing. The as-grown SiOx films exhibit wide band photoluminescence (PL) spectra with the main components at 688 nm, 750 nm, and 825 nm. The SiOx film deposited at 100 sccm hydrogen flow level shows the strongest PL intensity. According to PL results, the thermal annealing of the SiOx films generates the PL quenching in all samples due to hydrogen evaporation. The defects such as OH and Si–H groups in the as-grown SiOx films not only modify the optical band gap structure, but they also play the role of passivating non-radiative defects, which enhances the PL emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.D. Espinosa-Torres, J.A.D. Hernández de la Luz, J.F.J. Flores-Gracia, J.A. Luna-López, J. Martínez-Juárez, and G. Flores Carrasco, J. Mod. Phys. 6, 1679 (2015).

    Article  Google Scholar 

  2. N.D. Espinosa-Torres, D. Hernández-de la Luz, J.F.J. Flores Gracia, J.A. Luna-López, J. Martínez-Juárez, and D.E. Vázquez-Valerdi, Nanoscale Res. Lett. 9, 507 (2014).

    Article  Google Scholar 

  3. D. Dong, E.A. Irene, and D.R. Young, J. Electrochem. Soc. 125, 819 (1978).

    Article  Google Scholar 

  4. Y.C. Fang, W.Q. Li, L.J. Qi, L.Y. Li, Y.Y. Zhao, Z.J. Zhang, and M. Lu, Nanotechnology 15, 495 (2004).

    Article  Google Scholar 

  5. G.R. Lin, C.J. Lin, and H.C. Kuo, Appl. Phys. Lett. 91, 093122 (2007).

    Article  Google Scholar 

  6. C.H. Cheng, Y.C. Lien, C.L. Wu, and G.R. Lin, Opt. Express 21, 391 (2013).

    Article  Google Scholar 

  7. G.G. Sui, X.L. Wu, Y. Gu, and X.M. Boa, Appl. Phys. Lett. 74, 1812 (1999).

    Article  Google Scholar 

  8. H. Tamura, M. Ruckschloss, T. Wirschem, and S. Veprek, Appl. Phys. Lett. 65, 1537 (1994).

    Article  Google Scholar 

  9. A.J. Kenyon, P.F. Trwoga, C.W. Pitt, and G.J. Rehm, Appl. Phys. 79, 9291 (1996).

    Article  Google Scholar 

  10. G.R. Lin, C.J. Lin, C.K. Lin, L.J. Chou, and Y.L. Chueh, J. Appl. Phys. 97, 094306 (2005).

    Article  Google Scholar 

  11. X.Y. Chen, Y.F. Lu, Y.H. Wu, B.J. Cho, M.H. Liu, D.Y. Dai, and W.D. Song, J. Appl. Phys. 93, 6311 (2003).

    Article  Google Scholar 

  12. L. Pavesi, L. Dal Negro, L. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).

    Article  Google Scholar 

  13. O. Hanaizumi, K. Ono, and Y. Ogawa, Appl. Phys. Lett. 82, 538 (2003).

    Article  Google Scholar 

  14. K. Kohno, Y. Osaka, F. Toyomura, and H. Katayama, Jpn. J. Appl. Phys. 33, 6616 (1994).

    Article  Google Scholar 

  15. J.A. Luna López, G.G. Salgado, A.P. Pedraza, D.E.V. Valerdi, J.C. López, A.M. Sánchez, T.D. Becerril, E.R. Andrés, and H.J. Santiesteban, Procedia Eng. 25, 304 (2011).

    Article  Google Scholar 

  16. P.G. Pai, S.S. Chao, Y. Takagi, and G. Lucovsky, J. Vac. Sci. Technol. A 4, 689 (1986).

    Article  Google Scholar 

  17. S. Hayashi, S. Tanimoto, and K. Yamamoto, J. Appl. Phys. 68, 5300 (1990).

    Article  Google Scholar 

  18. L.B. Ma, A.L. Ji, C. Liu, Y.Q. Wang, and Z.X. Cao, J. Vac. Sci. Technol. B 22, 2654 (2004).

    Article  Google Scholar 

  19. H. Wiesmann, A.K. Ghosh, T. McMahon, and M. Strongin, J. Appl. Phys. 50, 3752 (1979).

    Article  Google Scholar 

  20. H. Matsumura, Jpn. J. Appl. Phys. 37, 3175 (1998).

    Article  Google Scholar 

  21. A.H. Mahan, Thin Solid Films 395, 12 (2001).

    Article  Google Scholar 

  22. S. Nagraj, G.G. Nick, Y. Min-Feng, and S.P. Vanka, Diam. Relat. Mater. 17, 79 (2008).

    Article  Google Scholar 

  23. F. Piazza, G. Morell, J. Beltran-Huarac, G. Paredes, M. Ahmadi, and M. Guinel, Carbon 75, 113 (2014).

    Article  Google Scholar 

  24. F. Iacona, G. Franzo, and C. Spinella, J. Appl. Phys. 87, 1295 (2000).

    Article  Google Scholar 

  25. F. Iacona, C. Borgiono, and C. Spinella, J. Appl. Phys. 95, 3723 (2004).

    Article  Google Scholar 

  26. L. Wang, K. Han, and M. Tao, J. Electrochem. Soc. 154, D91 (2007).

    Article  Google Scholar 

  27. J.I. Pankove, Optical Process in Semiconductors, 1st ed. (New York: Dover Publications, Inc., 1971), pp. 35–86.

    Google Scholar 

  28. L. Pavesi, and R. Turan, Silicon Nanocrystals: Fundamentals, Synthesis and Applications, 1st ed. (Weinheim: Wiley-VCH Verlay GmbH & Co KGaA, 2010), pp. 9 and 247.

  29. M.S. Valipa, S. Sriraman, E.S. Aydil, and D. Maroudas, J. Appl. Phys. 100, 053515 (2006).

    Article  Google Scholar 

  30. M. Luppi and S. Ossicini, Phys. Rev. B 71, 035340 (2005).

    Article  Google Scholar 

  31. F. Gordillo Delgado, J.G. Mendoza Álvarez, and O. Zelaya Ángel, Rev. Col. de Fís. 38, 129 (2006).

    Google Scholar 

  32. J.A. Luna López, J. Carrillo López, D.E. Vázquez Valerdi, G. García Salgado, T. Díaz Becerril, A. Ponce Pedraza, and F.J. Flores Gracia, Nanoscale Res. Lett. 7, 604 (2012).

    Article  Google Scholar 

  33. X.Y. Chen, Y. Lu, L.J. Tang, Y.H. Wu, B.J. Cho, J.R. Dong, and W.D. Song, J. Appl. Phys. 97, 014913 (2005).

    Article  Google Scholar 

  34. F. Ay and A. Aydinly, Opt. Mater. 26, 33 (2004).

    Article  Google Scholar 

  35. A. Benmessaoud (Doctoral thesis, Universidad Autónoma de Barcelona, Departamento de Física, Bellaterra, 2001), p. 71.

  36. F.B. McLean, IEEE Trans. Nucl. Sci. 27, 1651 (2001).

    Article  Google Scholar 

  37. T. Shimizu-Iwayama, D.E. Hole, and I.W. Boyd, J. Phys. Condens. Matter 11, 6595 (1999).

    Article  Google Scholar 

  38. T. Morioka, S. Kimura, N. Tsuda, Ch Kaito, Y. Saito, and C. Koike, Mon. Not. R. Astron. Soc. 299, 78 (1998).

    Article  Google Scholar 

  39. C.-J. Lin and G.-R. Lin, IEEE J. Quantum Electron. 41, 441 (2005).

    Article  Google Scholar 

  40. G.-R. Lin, C.-J. Lin, and Y. Kuo-Chen, J. Appl. Phys. 96, 3025 (2004).

    Article  Google Scholar 

  41. M. Ray, S. Minhaz, R.F. Klie, K. Banerjee, and S. Ghosh, Nanotechnology 21, 505602 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by CONACyT-255062 and VIEP-BUAP-LULJ-EXC-2016, PROFOCIE-2016. The authors acknowledge INAOE and IFUAP laboratory for their help in the samples measurements. Authors also want to thank Luis Gerardo Silva from CIMAV-Monterrey for the XPS measurements and University of Texas at San Antonio (UTSA) for the HRTEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Luna López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luna López, J.A., Vázquez Valerdi, D.E., Benítez Lara, A. et al. Optical and Compositional Properties of SiOx Films Deposited by HFCVD: Effect of the Hydrogen Flow. J. Electron. Mater. 46, 2309–2322 (2017). https://doi.org/10.1007/s11664-016-5271-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5271-1

Keywords

Navigation