Skip to main content
Log in

Sb2S3 Nanorods Based Electrochemical Catalyst for Triiodide Reduction in Dye-Sensitized Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, we report on the synthesis of Sb2S3 nanorods by using a hot-injection process in short processing time (1 h). Synthesized Sb2S3 nanorods are used as an electrochemical catalyst (counter electrode) for triiodide reduction in dye-sensitized solar cells (DSSCs). X-ray diffraction and field emission gun-transmission electron microscopy (FEG-TEM) analysis confirm the crystallinity of synthesized nanorods. The size and shape of synthesized materials are measured with the help of FEG-TEM analysis. Electrocatalytic activity study of Sb2S3 nanorods demonstrates the suitability of this material as an alternative electrochemical catalyst for DSSCs. The photoconversion efficiency of DSSCs fabricated using Sb2S3 as counter electrodes is found to be 4.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zhang, M. Ge, L. Yang, Z. Zhou, W. Chen, Q. Li, and L. Liu, J. Phys. Chem. C 117, 10285 (2013).

    Article  Google Scholar 

  2. Q. Han, Y. Yuan, X. Liu, X. Wu, F. Bei, X. Wang, and K. Xu, Langmuir 28, 6726 (2012).

    Article  Google Scholar 

  3. Y. Itzhak, O. Niitsoo, M. Page, and G. Hodes, J. Phys. Chem. C 113, 4254 (2009).

    Article  Google Scholar 

  4. D.H. Kim, S.J. Lee, M.S. Park, J.K. Kang, J.H. Heo, S.H. Im, and S.J. Sung, Nanoscale 6, 14549 (2014).

    Article  Google Scholar 

  5. M.S. You, C.S. Lim, D.H. Kwon, J.H. Heo, S.H. Im, and K.J. Chae, Org. Electron. 21, 155 (2015).

    Article  Google Scholar 

  6. M. Luo, M. Leng, X. Liu, J. Chen, C. Chen, S. Qin, and J. Tang, Appl. Phys. Lett. 104, 173904 (2014).

    Article  Google Scholar 

  7. X. Shuai and W. Shen, Nanoscale Res. Lett. 7, 199 (2012).

    Article  Google Scholar 

  8. J. Geroge and M.K. Radhakrishnan, Solid State Commun. 33, 987 (1980).

    Article  Google Scholar 

  9. O. Savadogo and K.C. Mandal, Electron. Lett. 28, 1682 (1992).

    Article  Google Scholar 

  10. H. Hou, M. Jing, Z. Huang, Y. Yang, Y. Zhang, J. Chen, Z. Wu, and X. Ji, A.C.S. Appl. Mater. Interfaces 7, 9362 (2015).

    Article  Google Scholar 

  11. Z. Yi, Q. Han, Y. Cheng, Y. Wu, and L. Wang, Chem. Commun. 52, 7691 (2016).

    Article  Google Scholar 

  12. Q. Lu, H. Zeng, Z. Wang, X. Cao, and L. Zhang, Nanotechnology 17, 2098 (2006).

    Article  Google Scholar 

  13. A. Kamble, K. Mokurala, A. Gupta, S. Mallick, and P. Bhargava, Mater. Lett. 137, 440 (2014).

    Article  Google Scholar 

  14. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, and Z. Lin, Mater. Today 18, 155 (2015).

    Article  Google Scholar 

  15. T. Jayaraman, A.R. Senthil, J. Madhavan, and M. Thandavarayan, ChemElectroChem 2, 928 (2015).

    Article  Google Scholar 

  16. M. Wu and T. Ma, J. Phys. Chem. C 118, 16727 (2014).

    Article  Google Scholar 

  17. Q. Tang, J. Duan, Y. Duan, B. He, and L. Yu, Electrochim. Acta 178, 886 (2015).

    Article  Google Scholar 

  18. K. Mokurala, S. Mallick, and P. Bhargava, J. Power Sources 305, 134 (2016).

    Article  Google Scholar 

  19. S. Yun, A. Hagfeldt, and T. Ma, Adv. Mater. 26, 6210 (2014).

    Article  Google Scholar 

  20. B. Chaitanya, K. Mokurala, P. Ravindran, P. Bhargava, and S. Mallick, Adv. Mater. Lett. 7, 100 (2016).

    Google Scholar 

  21. H. Yu, S. Zhang, H. Zhao, G. Will, and P. Liu, Electrochim. Acta 54, 1319 (2009).

    Article  Google Scholar 

  22. Y. Wang, M. Wu, X. Lin, A. Hagfeldt, and T. Ma, Eur. J. Inorg. Chem. 22, 3557 (2012).

    Article  Google Scholar 

  23. Z. Tang, J. Wu, M. Zheng, J. Huo, and Z. Lan, Nano Energy 2, 622 (2013).

    Article  Google Scholar 

  24. X. Wang, W.H. Zhou, Z.J. Zhou, Z.L. Hou, J. Guo, and S. Wu, Electrochim. Acta 104, 26 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnaiah Mokurala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokurala, K., Nagaraju, M. & Mallick, S. Sb2S3 Nanorods Based Electrochemical Catalyst for Triiodide Reduction in Dye-Sensitized Solar Cells. J. Electron. Mater. 46, 1926–1930 (2017). https://doi.org/10.1007/s11664-016-5266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5266-y

Keywords

Navigation