Skip to main content
Log in

Carbon Nanotube Field-Effect Transistor for DNA Sensing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A field-effect transistor (FET) using carbon nanotubes (CNTs) as the conducting channel (CNTFET) has been developed, designed such that the CNT conducting channel (15 μm long, 700 μm wide) is directly exposed to medium containing target deoxyribonucleic acid (DNA). The CNTFET operates at high ON-current of 1.91 μA, ON/OFF-current ratio of 1.2 × 105, conductance of 4.3 μS, and leakage current of 16.4 pA. We present initial trials showing the response of the CNTFET to injection of target DNA into aqueous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Bergveld, IEEE Trans. Biomed. Eng. 17, 70 (1970).

    Article  Google Scholar 

  2. P. Bergveld, Sens. Actuators B Chem. 88, 1 (2003).

    Article  Google Scholar 

  3. J. Bausells, J. Carrabina, A. Errachid, and A. Merlos, Sens. Actuators B Chem. 57, 56 (1999).

    Article  Google Scholar 

  4. L.M. Shepherd, S. Member, and C. Toumazou, IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 52, 2614 (2005).

    Article  Google Scholar 

  5. S. Iijima and I. Toshinari, Nature 363, 03 (1993).

    Article  Google Scholar 

  6. V.N. Popov, Mater. Sci. Eng., R 43, 61 (2004).

    Article  Google Scholar 

  7. S.I. Cha, K.T. Kim, K.H. Lee, C.B. Mo, Y.J. Jeong, and S.H. Hong, Carbon 46, 482 (2008).

    Article  Google Scholar 

  8. S.J. Tans, A.R.M. Verschueren, and C. Dekker, Nature 393, 49 (1998).

    Article  Google Scholar 

  9. P. Avouris, Acc. Chem. Res. 35, 1026 (2002).

    Article  Google Scholar 

  10. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris, Appl. Phys. Lett. 73, 2447 (1998).

    Article  Google Scholar 

  11. S.J. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris, Appl. Phys. Lett. 80, 3817 (2002).

    Article  Google Scholar 

  12. F. Yuan, Y. Deng, W. Zhou, M. Zhang, and Z. Li, Nano Res. 9, 1701 (2016).

    Article  Google Scholar 

  13. Y. Han, D. Mayer, A. Offenha, and S. Ingebrandt, Thin Solid Films 510, 175 (2006).

    Article  Google Scholar 

  14. T.T. Nguyen, S.U. Nguyen, and D.T. Phuong, Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 1 (2011).

    Google Scholar 

  15. A. Javey, Q. Wang, W. Kim, and H. Dai, IEEE International Electron Devices Meeting (2004), pp. 1–4.

  16. S.H. Jin, A.E. Islam, T. Kim, J. Kim, M.A. Alam, and J.A. Rogers, Adv. Funct. Mater. 22, 2276 (2012).

    Article  Google Scholar 

  17. M. Simon and N. Kwok, Physics of Semiconductor Devices, 3rd ed. (Hoboken: Wiley-Interscience, 2007).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Vietnamese National Foundation for Science and Technology Development (NAFOSTED) under Project Code No. 103.99-2013.58.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mai A. Tuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, C.T., Thuy, N.T., Luyen, T.T. et al. Carbon Nanotube Field-Effect Transistor for DNA Sensing. J. Electron. Mater. 46, 3507–3511 (2017). https://doi.org/10.1007/s11664-016-5238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5238-2

Keywords

Navigation