Skip to main content

Structural and Optical Properties of Group III Doped Hydrothermal ZnO Thin Films

Abstract

In this work, we employ a simple two-step growth technique to deposit impurity doped heteroepitaxial thin films of (0001) ZnO onto (111) MgAl2O4 spinel substrates through a combination of atomic layer deposition (ALD) and hydrothermal growth. The hydrothermal layer is doped with Al, Ga, and In through the addition of their respective nitrate salts. We evaluated the effect that varying the concentrations of these dopants has on both the structural and optical properties of these films. It was found that the epitaxial ALD layer created a \( \langle 111\rangle_{{{\rm{MgAl}}_{2} {\rm{O}}_{4} }} \left\| {\;\langle 0001\rangle_{\rm{ZnO}} } \right. \) out-of-plane orientation and a \( \langle \bar{1}\bar{1}2\rangle_{{{\rm{MgAl}}_{2} {\rm{O}}_{4} }} \left\| {\;\langle 01\bar{1}0\rangle_{\rm{ZnO}} } \right. \) in-plane orientation between the film and substrate. The rocking curve line widths ranged between 0.75° and 1.80° depending on dopant concentration. The optical bandgap determined through the Tauc method was between 3.28 eV and 3.39 eV and showed a Burstein-Moss shift with increasing dopant concentration.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H.C. Cheng, C.F. Chen, and C.C. Lee, Thin Solid Films 498, 142 (2006).

    Article  Google Scholar 

  2. 2.

    A.J. Mughal, S. Oh, A. Myzaferi, S. Nakamura, J.S. Speck, and S.P. DenBaars, Electron. Lett. 52, 304 (2016).

    Article  Google Scholar 

  3. 3.

    J. Richardson, I. Koslow, C.-C. Pan, Y. Zhao, J.-S. Ha, and S.P. DenBaars, Appl. Phys. Express 4, 126502 (2011).

    Article  Google Scholar 

  4. 4.

    E. Fortunato, L. Raniero, L. Silva, A. Goncalves, A. Pimentel, P. Barquinha, H. Aguas, L. Pereira, G. Goncalves, and I. Ferreira, Sol. Energy Mater. Sol. Cells 92, 1605 (2008).

    Article  Google Scholar 

  5. 5.

    C. Klingshirn, Phys. Status Solidi Basic Res. 244, 3027 (2007).

    Article  Google Scholar 

  6. 6.

    U. Ozgur, D. Hofstetter, and H. Morkoc, Proc. IEEE 98, 1255 (2010).

    Article  Google Scholar 

  7. 7.

    H. Morkoç and U. Ozgur, General Properties of ZnO, in: Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH, Weinheim, 2009), pp. 1–76.

  8. 8.

    A. Janotti and C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).

    Article  Google Scholar 

  9. 9.

    T. Minami, H. Sato, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 24, L781 (1985).

    Article  Google Scholar 

  10. 10.

    A. Suzuki, T. Matsushita, T. Aoki, Y. Yoneyama, and M. Okuda, Jpn. J. Appl. Phys. 40, L401 (2001).

    Article  Google Scholar 

  11. 11.

    H.J. Ko, Y.F. Chen, S.K. Hong, H. Wenisch, T. Yao, and D.C. Look, Appl. Phys. Lett. 77, 3761 (2000).

    Article  Google Scholar 

  12. 12.

    A.N. Gruzintsev, V.T. Volkov, and L.N. Matveeva, Russ. Microelectron. 31, 227 (2002).

    Google Scholar 

  13. 13.

    O.A. Fouad, A.A. Ismail, Z.I. Zaki, and R.M. Mohamed, Appl. Catal. B Environ. 62, 144 (2006).

    Article  Google Scholar 

  14. 14.

    Z.C. Jin, I. Hamberg, and C.G. Granqvist, J. Appl. Phys. 64, 5117 (1988).

    Article  Google Scholar 

  15. 15.

    T. Tynell and M. Karppinen, Semicond. Sci. Technol. 29, 43001 (2014).

    Article  Google Scholar 

  16. 16.

    R.E. Riman, W.L. Suchanek, and M.M. Lencka, Ann. Chim. Sci. Des. Mater. 27, 15 (2002).

    Article  Google Scholar 

  17. 17.

    J. Richardson and F.F. Lange, Cryst. Growth Des. 9, 2570 (2009).

    Article  Google Scholar 

  18. 18.

    L.H. Quang, L. Swee Kuan, and G.G. Kia Liang, J. Cryst. Growth 312, 437 (2010).

    Article  Google Scholar 

  19. 19.

    H.Q. Le, S.K. Lim, G.K.L. Goh, S.J. Chua, and J. Ong, J. Electrochem. Soc. 157, H796 (2010).

    Article  Google Scholar 

  20. 20.

    H.Q. Le and S.J. Chua, J. Phys. D Appl. Phys. 44, 125104 (2011).

    Article  Google Scholar 

  21. 21.

    J. Richardson, G.K.L. Goh, H.Q. Le, L.-L. Liew, F.F. Lange, and S.P. DenBaars, Cryst. Growth Des. 11, 3558 (2011).

    Article  Google Scholar 

  22. 22.

    N.J. Nicholas, G.V. Franks, and W.A. Ducker, CrystEngComm 14, 1232 (2012).

    Article  Google Scholar 

  23. 23.

    D. Andeen, L. Loeffler, N. Padture, and F.F. Lange, J. Cryst. Growth 259, 103 (2003).

    Article  Google Scholar 

  24. 24.

    Y. Chen, S. Hong, H. Ko, M. Nakajima, T. Yao, and Y. Segawa, Appl. Phys. Lett. 76, 245 (2000).

    Article  Google Scholar 

  25. 25.

    S.W. Shin, Y. Bin Kwon, A.V. Moholkar, G.-S. Heo, I.O. Jung, J.-H. Moon, J.H. Kim, and J.Y. Lee, J. Cryst. Growth 322, 45 (2011).

    Article  Google Scholar 

  26. 26.

    A. Escobedo Morales, M. Herrera Zaldivar, and U. Pal, Opt. Mater. 29, 100 (2006).

    Article  Google Scholar 

  27. 27.

    J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B 15, 627 (1966).

    Article  Google Scholar 

  28. 28.

    B.D. Viezbicke, S. Patel, B.E. Davis, and D.P. Birnie, Phys. Status Solidi 252, 1700 (2015).

    Article  Google Scholar 

  29. 29.

    V. Srikant and D.R. Clarke, J. Appl. Phys. 83, 5447 (1998).

    Article  Google Scholar 

  30. 30.

    E. Burstein, Phys. Rev. 93, 632 (1954).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Asad J. Mughal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 329 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mughal, A.J., Carberry, B., Speck, J.S. et al. Structural and Optical Properties of Group III Doped Hydrothermal ZnO Thin Films. Journal of Elec Materi 46, 1821–1825 (2017). https://doi.org/10.1007/s11664-016-5235-5

Download citation

Keywords

  • Hydrothermal deposition
  • ZnO
  • TCO
  • thin films
  • ALD
  • Burstein-Moss Effect