Skip to main content
Log in

Amended Electric Field Distribution: A Reliable Technique for Electrical Performance Improvement in Nano scale SOI MOSFETs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To achieve reliable transistors, we propose a new silicon-on-insulator (SOI) metal–oxide–semiconductor field-effect transistor (MOSFET) with an amended electric field in the channel for improved electrical and thermal performance, with an emphasis on current leakage improvement. The amended electric field leads to lower electric field crowding and thereby we assume enhanced reliability, leakage current, gate-induced drain leakage (GIDL), and electron temperature. To modify the electric field distribution, an additional rectangular metal region (RMR) is utilized in the buried oxide of the SOI MOSFET. The location and dimensions of the RMR have been carefully optimized to achieve the best results. The electrical, thermal, and radiofrequency characteristics of the proposed structure were analyzed using two-dimensional (2-D) numerical simulations and compared with the characteristics of the conventional, fully depleted SOI MOSFET (C-SOI). Also, critical short-channel effects (SCEs) such as threshold voltage, drain-induced barrier lowering (DIBL), subthreshold slope degradation, hot-carrier effect, GIDL, and leakage power consumption are improved. According to the results obtained, the proposed nano SOI MOSFET is a reliable device, especially for use in low-power and high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Chaudhry and M. Jagadesh Kumar, IEEE Trans. Device Mater. Reliab. 4, 1 (2004).

    Article  Google Scholar 

  2. T.H. Ning, C.M. Osburn, and H.N. Yu, J. Appl. Phys. 48, 286 (1997).

    Article  Google Scholar 

  3. H. Krautscheider, A. Kohlhase, and H. Terlezki, Microelectron. Reliab. 37, 19 (1997).

    Article  Google Scholar 

  4. H.C. Poon, L.D. Yau, R.L. Johnston, and D. Beecham, IEDM Tech. Dig. 8.4, 156 (1974).

  5. R.W. Cottrel, R.R. Troutman, and T.H. Ning, IEEE Trans. Electron Devices 26, 520 (1979).

    Article  Google Scholar 

  6. M.V. Fischetti, S.E. Laux, and D.J. DiMaria, Appl. Surf. Sci. 39, 578 (1989).

    Article  Google Scholar 

  7. D.R. Walters and A.T.A. Zegers-van Duynhoven, Appl. Surf. Sci. 39, 565 (1989).

    Article  Google Scholar 

  8. H. Wong and Y.C. Cheng, J. Appl. Phys. 67, 7132 (1990).

    Article  Google Scholar 

  9. K. Venkataswamy and S. Kumar, Performance tradeoff of leakage reduction techniques in nanoscale CMOS circuits, Master’s Thesis, The University of Texas at San Antonio (2009).

  10. M.K. Anvarifard and A.A. Orouji, Superlattices Microstruct. 60, 561 (2013).

    Article  Google Scholar 

  11. Device simulator Atlas, Atlas User’s Manual (Santa Clara: Silvaco International Software, 2014).

    Google Scholar 

  12. H. Wong, Y. Fub, J.J. Liou, and Y. Yue, Microelectron. Reliab. Elsevier J. 49, 13 (2009).

    Article  Google Scholar 

  13. Z. Ramezani and A.A. Orouji, IEEE Trans. Electron Devices 61, 10 (2014).

    Article  Google Scholar 

  14. M. Rahimian and A.A. Orouji, Superlattices Microstruct. 50, 667 (2011).

    Article  Google Scholar 

  15. J. Chen, J. Luo, Q. Wu, Z. Chai, T. Yu, Y. Dong, and X. Wang, IEEE Trans. Electron Devices 43, 1346 (2011).

    Article  Google Scholar 

  16. B. Gu, H.Y. Liu, Y.W. Mai, X.Q. Feng, and S.W. Yu, Eng. Fracture Mech. 75, 4996 (2008).

    Article  Google Scholar 

  17. B. Ghyselen, J.M. Hartmann, T. Ernst, C. Aulnette, B. Osternaud, Y. Bogumilowicz, A. Abbadie, P. Besson, O. Rayssac, A. Tiberj, N. Daval, I. Cayrefourq, F. Fournel, H. Moriceau, C. Di Nardo, F. Andrieu, V. Paillard, M. Cabi, L. Vincent, E. Snoeck, F. Cristiano, A. Rocher, A. Ponchet, A. Claverie, P. Boucaud, M.N. Semeria, D. Bensahel, N. Kernevez, and C. Mazure, Solid-State Electron. 48, 1285 (2004)

  18. J. Du, W.H. Ko, and D.J. Young, Sens. Actuators A Phys. 112, 116 (2004).

    Article  Google Scholar 

  19. A.H. Aminbeidokhti, Ali A. Orouji, S. Rahmaninezhad, and M. Ghasemian, IEEE Trans. Electron Devices 59, 5 (2012).

    Article  Google Scholar 

  20. Z. Ramezani, A.A. Orouji, and P. Keshavarzi, Phys. E 59, 202 (2014).

    Article  Google Scholar 

  21. D.K. ShRMRa and K.V. Ramanathan, IEEE Electron Device Lett. 4, 362 (1983).

    Article  Google Scholar 

  22. S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (New Jersey: Wiley, 2007).

    Google Scholar 

  23. B. Iniguez and T.A. Fjeldly, Solid-State Electron. 41, 87 (1997)

  24. M. Tanizawa, M. Ikeda, N. Kotani, K. Tsukamoto, and K. Horie, IEEE Trans. CAD/ICAS 12, 1749 (1993).

    Google Scholar 

  25. T.C. Ong, P.K. Ko, and C. Hu, IEEE Trans. Electron Devices 37, 7 (1990).

    Article  Google Scholar 

  26. S. Tam, P.K. Ko, and C. Hu, IEEE Trans. Electron Devices 31, 1116 (1984).

    Article  Google Scholar 

  27. S. Tanaka, Solid-State Electron. 38, 683 (1995).

    Article  Google Scholar 

  28. T. Wang, T.E. Chang, C.M. Huang, J.Y. Yang, K.M. Chang, and L.P. Chiang, IEEE Electron Device Lett. 16, 566 (1995).

    Article  Google Scholar 

  29. K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, Proc. IEEE 91, 305 (2003).

    Article  Google Scholar 

  30. A. Bouhdada, S. Bakkali, and A. Touhami, Microelectron. Reliab. 37, 649 (1997).

    Article  Google Scholar 

  31. J. Chen, T.Y. Chan, I.C. Chen, P.K. Ko, and C. Hu, IEEE Electron Device Lett. 8, 515 (1987).

    Article  Google Scholar 

  32. O. Kane, J. Appl. Phys. 32, 83 (1961).

    Article  Google Scholar 

  33. K. Ohyu, M. Ohkura, A. Hiraiwa, and K. Watanabe, IEEE Trans. Electron Devices 42, 1404 (1995).

    Article  Google Scholar 

  34. Y.P. Tsividis, Operation and Modeling of the MOS Transistor (New York: McGraw-Hill, 1987).

    Google Scholar 

  35. A. Godoy, J.A. Lopez- Villanueva, J.A. Jimemez-Tijada, A. Palma, and F. Gamiz, Solid-State Electron. 45, 391 (2001).

    Article  Google Scholar 

  36. A.A. Orouji and M. Rahimian, Curr. Appl. Phys. 12, 1366 (2012).

    Article  Google Scholar 

  37. M. Rahimian and A.A. Orouji, Mater. Sci. Semicond. Process. 16, 1248 (2013).

    Article  Google Scholar 

  38. A.A. Orouji and M. Rahimian, Phys. E 44, 333 (2011).

    Article  Google Scholar 

  39. S.K. Kim, S.I. Kim, H. Lim, D.S. Jeong, B. Kwon, S.H. Baek, and J.S. Kim, Scientific report 5, No. 8023, Supported by the Korea Institute of Science and Technology, South Korea (2015).

  40. C.G. Sodini, T.W. Ekstedtd, and J. Moll, Solid State Electron. 25, 833 (1982).

    Article  Google Scholar 

  41. R.H. Dennard, F.H. Gaensslen, L. Kuhn, and H.N. Yu, IEDM Tech. Dig. 12, 168 (1972).

  42. R.H. Dennard, F.H. Gaensslen, H.N. Yu, V.L. Rideout, E. Bassous, and A. Le Blanc, IEEE J. Solid-State Circ. 9, 256 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Orouji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, Z., Orouji, A.A. Amended Electric Field Distribution: A Reliable Technique for Electrical Performance Improvement in Nano scale SOI MOSFETs. J. Electron. Mater. 46, 2269–2281 (2017). https://doi.org/10.1007/s11664-016-5222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5222-x

Keywords

Navigation