Skip to main content

The Impact of Surface Chemistry on Bio-derived Carbon Performance as Supercapacitor Electrodes


In this study, we demonstrate that highly functionalized and porous carbons can be derived from palm-leaf waste using the template-free facile synthesis process. The derived carbons have high content of nitrogen dopant, high surface area, and various defects. Moreover, these carbons exhibit a high electrical conductivity (107 S m−1). Thanks to the high content of edge N (64.3%) and highly microporous nature (82% of microspores), these biomass-derived carbons show promising performance when used as supercapacitor electrodes. To be specific, these carbonaceous materials show a specific capacitance as high as 197 and 135 F g−1 at 2 and 20 A g−1 in three-electrode configuration, respectively. Furthermore, the symmetrical cells using palm-leaf-derived carbon show an energy density of 8.4 Wh Kg−1 at a power density of 0.64 kW Kg−1, with high cycling life stability (∼8% loss after 10,000 continuous charge–discharge cycles at 20 A g−1). Interestingly, as the power density increases from 4.4 kW kg−1 to 36.8 kW kg−1, the energy density drops slowly from 8.4 Wh kg−1 to 3.4 Wh kg−1. Getting such extremely high power density without significant loss of energy density indicates that these palm-leaf-derived carbons have excellent electrode performance as supercapacitor electrodes.

Graphical Abstract

This is a preview of subscription content, access via your institution.


  1. 1.

    J.H. Hou, C.B. Cao, F. Idrees, and X.L. Ma, ACS Nano 9, 2556 (2015).

    Article  Google Scholar 

  2. 2.

    J. Yan, Q. Wang, T. Wei, and Z.J. Fan, Adv. Energy Mater. 4, 1300816 (2014).

    Article  Google Scholar 

  3. 3.

    S.M. Chen, R. Ramachandran, V. Mani, and R. Saraswathi, Int. J. Electrochem. Sci. 9, 4072 (2014).

    Google Scholar 

  4. 4.

    V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Energy Environ. Sci. 4, 3243 (2011).

    Article  Google Scholar 

  5. 5.

    B. Ahmed, C. Xia, and H.N. Alshareef, Nano Today. 11, 250 (2016).

    Article  Google Scholar 

  6. 6.

    Z. Li, Z.W. Xu, H.L. Wang, J. Ding, B. Zahiri, C.M.B. Holt, X.H. Tan, and D. Mitlin, Energy Environ. Sci. 7, 1708 (2014).

    Article  Google Scholar 

  7. 7.

    C. Xia, W. Chen, X.B. Wang, M.N. Hedhili, N.N. Wei, and H.N. Alshareef, Adv. Energy Mater. 5, 1401805 (2015).

    Article  Google Scholar 

  8. 8.

    E.M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W.P. Kalisvaart, M. Hazelton, and D. Mitlin, ACS Nano 8, 7115 (2014).

    Article  Google Scholar 

  9. 9.

    L.L. Zhang and X.S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).

    Article  Google Scholar 

  10. 10.

    H. Zanin, E. Saito, H. Ceragioli, V. Baranauskas, and E. Corat, Mater. Res. Bull. 49, 487 (2014).

    Article  Google Scholar 

  11. 11.

    H. Zhu, X.L. Wang, F. Yang, and X.R. Yang, Adv. Mater. 23, 2745 (2011).

    Article  Google Scholar 

  12. 12.

    Z. Li, L. Zhang, B.S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B.C. Olsen, C. Holt, and D. Mitlin, Adv. Energy Mater. 2, 431 (2012).

    Article  Google Scholar 

  13. 13.

    B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1st ed. (New York: Kluwer Academic/Plenum, 1999).

    Book  Google Scholar 

  14. 14.

    C.O. Ania, V. Khomenko, E. Raymundo-Piñero, J.B. Parra, and F. Béguin, Adv. Funct. Mater. 17, 1828 (2007).

    Article  Google Scholar 

  15. 15.

    A. Stein, Z. Wang, and M.A. Fierke, Adv. Mater. 21, 265 (2009).

    Article  Google Scholar 

  16. 16.

    Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng, and J. Chen, Adv. Mater. 24, 5610 (2012).

    Article  Google Scholar 

  17. 17.

    Z. Li, Z. Xu, X. Tan, H. Wang, C.M. Holt, T. Stephenson, B.C. Olsen, and D. Mitlin, Energy Environ. Sci. 6, 871 (2013).

    Article  Google Scholar 

  18. 18.

    V. Khomenko, E. Frackowiak, and F. Beguin, Electrochim Acta. 50, 2499 (2005).

    Article  Google Scholar 

  19. 19.

    C. Xia, Q. Jiang, C. Zhao, M.N. Hedhili, and H.N. Alshareef, Adv. Mater. 28, 77 (2016).

    Article  Google Scholar 

  20. 20.

    J. Ding, H.L. Wang, Z. Li, A. Kohandehghan, K. Cui, Z.W. Xu, B. Zahiri, X.H. Tan, E.M. Lotfabad, B.C. Olsen, and D. Mitlin, ACS Nano 7, 11004 (2013).

    Article  Google Scholar 

  21. 21.

    B. Kumar, M. Asadi, D. Pisasale, S. Sinha-Ray, B.A. Rosen, R. Haasch, J. Abiade, A.L. Yarin, and A. Salehi-Khojin, Nat. Commun. 4, 2819 (2013).

    Google Scholar 

  22. 22.

    C. Xia, W. Chen, X. Wang, M.N. Hedhili, N. Wei, and H.N. Alshareef, Adv. Energy Mater. 5, 1401805 (2015).

    Article  Google Scholar 

  23. 23.

    P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).

    Article  Google Scholar 

  24. 24.

    C.M. Parlett, K. Wilson, and A.F. Lee, Chem. Soc. Rev. 42, 3876 (2013).

    Article  Google Scholar 

  25. 25.

    Y.S. Yun, S.Y. Cho, J. Shim, B.H. Kim, S.J. Chang, S.J. Baek, Y.S. Huh, Y. Tak, Y.W. Park, and S. Park, Adv. Mater. 25, 1993 (2013).

    Article  Google Scholar 

  26. 26.

    M. Biswal, A. Banerjee, M. Deo, and S. Ogale, Energy Environ. Sci. 6, 1249 (2013).

    Article  Google Scholar 

  27. 27.

    F.-C. Wu, R.-L. Tseng, C.-C. Hu, and C.-C. Wang, J. Power Sources 144, 302 (2005).

    Article  Google Scholar 

  28. 28.

    B. Dyatkin, O. Gogotsi, B. Malinovskiy, Y. Zozulya, P. Simon, and Y. Gogotsi, J. Power Sources 306, 32 (2016).

    Article  Google Scholar 

  29. 29.

    E. Tee, I. Tallo, T. Thomberg, A. Jänes, and E. Lust, J. Electrochem. Soc. 163, A1317 (2016).

    Article  Google Scholar 

  30. 30.

    B. Krüner, J. Lee, N. Jäckel, A. Tolosa, and V. Presser, ACS. Appl. Mater. Inter. 8, 9104 (2016).

    Article  Google Scholar 

  31. 31.

    P. Serp and J.L. Figueiredo, Carbon Materials for Catalysis (NJ: Wiley, 2009), p. 219.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Chuan Xia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1145 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alshareef, N.H., Whitehair, D. & Xia, C. The Impact of Surface Chemistry on Bio-derived Carbon Performance as Supercapacitor Electrodes. Journal of Elec Materi 46, 1628–1636 (2017).

Download citation


  • Palm-leaf-derived carbon
  • supercapacitor
  • energy storage
  • high energy density