Skip to main content

Effect of the Ammonia Flow on the Formation of Microstructure Defects in GaN Layers Grown by High-Temperature Vapor Phase Epitaxy

Abstract

High-temperature vapor phase epitaxy (HTVPE) is a physical vapor transport technology for a deposition of gallium nitride (GaN) layers. However, little is known about the influence of the deposition parameters on the microstructure of the layers. In order to fill this gap, the influence of the ammonia (NH3) flow applied during the HTVPE growth on the microstructure of the deposited GaN layers is investigated in this work. Although the HTVPE technology is intended to grow GaN layers on foreign substrates, the GaN layers under study were grown on GaN templates produced by metal organic vapor phase epitaxy in order to be able to separate the growth defects from the defects induced by the lattice misfit between the foreign substrate and the GaN layer. The microstructure of the layers is characterized by means of high-resolution x-ray diffraction (XRD), transmission electron microscopy and photoluminescence. In samples deposited at low ammonia flow, planar defects were detected, along which the nitrogen atoms are found to be substituted by impurity atoms. The interplay between these planar defects and the threading dislocations is discussed. A combination of XRD and micro-Raman spectroscopy reveals the presence of compressive residual stress in the samples.

This is a preview of subscription content, access via your institution.

References

  1. S. Nakamura and G. Fasol, The Blue Laser Diode (New York: Springer, 1997).

    Book  Google Scholar 

  2. T.J. Flack, B.N. Pushpakaran, and S.B. Bayne, J. Electron. Mater. 45, 2673–2682 (2016).

    Article  Google Scholar 

  3. C.S. Tomiya, H. Nakajima, K. Funato, T. Miyajima, K. Kobayashi, T. Hino, S. Kijima, T. Assano, and M. Ikeda, Phys. Status Solidi (a) 188, 69 (2001).

    Article  Google Scholar 

  4. M.S. Shur and R.F. Davis, GaN-Based Materials and Devices. Growth, Fabrication, Characterization and Performance (Singapore: World Scientific, 2004).

    Book  Google Scholar 

  5. S. Fischer, C. Wetzel, W.L. Hansen, E.D. Bourret-Courchesne, B.K. Meyer, and E.E. Haller, Appl. Phys. Lett. 69, 2716 (1996).

    Article  Google Scholar 

  6. D. Siche, H.-J. Rost, K. Böttcher, D. Gogova, and R. Fornari, J. Cryst. Growth 310, 916 (2008).

    Article  Google Scholar 

  7. H.-J. Rost, D. Siche, D. Gogova, M. Albrecht, K. Jacobs, and R. Fornari, Phys. Status Solidi (c) 6, 1484 (2009).

    Article  Google Scholar 

  8. M. Barchuk, G. Lukin, C. Röder, M. Motylenko, O. Pätzold, J. Kortus, and D. Rafaja, Mater. Struct. 21, 105–106 (2014).

    Google Scholar 

  9. G. Lukin, C. Röder, M. Barchuk, G. Schreiber, O. Pätzold, J. Kortus, D. Rafaja, and M. Stelter, Phys. Status Solidi (c) 11, 491–494 (2014).

    Article  Google Scholar 

  10. M. Barchuk, C. Röder, Y. Shashev, G. Lukin, M. Motylenko, J. Kortus, O. Pätzold, and D. Rafaja, J. Cryst. Growth 386, 1–8 (2014).

    Article  Google Scholar 

  11. C. Noyan and J.B. Cohen, Residual Stress, Measurements by Diffraction and Interpretation (New York: Springer, 1987).

    Google Scholar 

  12. M. Albrecht, J. Wollweber, M. Rossberg, M. Schmidbauer, C. Hartmann, and R. Fornari, Appl. Phys. Lett. 88, 211904 (2006).

    Article  Google Scholar 

  13. G. Orsal, N. Maloufi, S. Gautier, M. Alnot, A.A. Sirenko, M. Bouchaour, and A. Ougazzaden, J. Cryst. Growth 310, 5058 (2008).

    Article  Google Scholar 

  14. M.A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).

    Article  Google Scholar 

  15. A.K. Viswanath, E. Shin, J.I. Lee, S. Yu, D. Kim, B. Kim, Y. Choi, and C.-H. Hong, J. Appl. Phys. 83, 2272 (1998).

    Article  Google Scholar 

  16. S. Fischer, C. Wetzel, E.E. Haller, and B.K. Meyer, Appl. Phys. Lett. 67, 1298 (1995).

    Article  Google Scholar 

  17. E.R. Glaser, J.A. Freitas Jr, B.V. Shanabrook, and D.D. Koleske, Phys. Rev. B 68, 195201 (2003).

    Article  Google Scholar 

  18. J. Jayapalan, B.J. Skromme, R.P. Vaudo, and V.M. Phanse, Appl. Phys. Lett. 73, 1188 (1998).

    Article  Google Scholar 

  19. T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H.P. Strunk, Philos. Mag. A 77, 1013–1025 (1998).

    Article  Google Scholar 

  20. W. Lee, H.J. Lee, S.H. Park, K. Watanabe, K. Kumagai, T. Yao, J.H. Chang, and T. Sekiguchi, J. Cryst. Growth 351, 83–87 (2012).

    Article  Google Scholar 

  21. D.N. Zakharov, Z. Liliental-Weber, B. Wagner, Z.J. Reitmeier, E.A. Preble, and R.F. Davis, Phys. Rev. B 71, 235334 (2005).

    Article  Google Scholar 

  22. M.A. Moram and M.E. Vickers, Rep. Prog. Phys. 72, 036502 (2009).

    Article  Google Scholar 

  23. M. Barchuk, V. Holý, D. Kriegner, J. Stangl, S. Schwaiger, and F. Scholz, Phys. Rev. B 84, 9 (2011).

    Article  Google Scholar 

  24. M.M.J. Treacy, J.M. Newsam, and M.W. Deem, Proc. R. Soc. Lond. A 433, 499–520 (1991).

    Article  Google Scholar 

  25. M. Barchuk, V. Holý, B. Miljevic, B. Krause, T. Baumbach, J. Hertkorn, and F. Scholz, J. Appl. Phys. 108, 43521 (2010).

    Article  Google Scholar 

  26. V.M. Kaganer, B. Jenichen, M. Ramsteiner, U. Jahn, Ch. Hauswald, F. Grosse, S. Fernandez-Garrido, and O. Brandt, J. Phys. D Appl. Phys. 48, 385105 (2015).

    Article  Google Scholar 

  27. M.J. Kappers, R. Datta, R.A. Oliver, F.D.G. Rayment, M.E. Vickers, and C.J. Humphreys, J. Cryst. Growth 300, 70–74 (2007).

    Article  Google Scholar 

  28. L. Liu and J.H. Edgar, Mater. Sci. Eng. R Rep 37, 61–127 (2002).

    Article  Google Scholar 

  29. J. Chen, H. Cheng, S. Zhang, F. Lan, Ch Qi, Y. Xu, Z. Wang, J. Li, and Z. Lai, J. Electron. Mater. 45, 4782–4789 (2016).

    Article  Google Scholar 

  30. H. Wang, W. Wang, W. Yang, Y. Zhu, Zh Lin, and G. Li, Appl. Surf. Sci. 369, 414–421 (2016).

    Article  Google Scholar 

  31. S. Hearne, E. Chason, J. Han, J.A. Floro, J. Figiel, J. Hunter, H. Amano, and I.S.T. Tsong, Appl. Phys. Lett. 74, 356 (1999).

    Article  Google Scholar 

  32. T. Böttcher, S. Einfeldt, S. Figge, R. Chierchia, H. Heinke, D. Hommel, and J.S. Speck, Appl. Phys. Lett. 78, 1976 (2001).

    Article  Google Scholar 

  33. M. Leroux, B. Beaumont, N. Grandjean, P. Lorenzini, S. Haffouz, P. Vennegues, J. Massies, and P. Gibart, Mater. Sci. Eng. B 50, 97–104 (1997).

    Article  Google Scholar 

  34. E. Richter, T. Stoica, U. Zeimer, C. Netzel, M. Weyers, and G. Tränkle, J. Electron. Mater. 42, 820–825 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Barchuk.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barchuk, M., Lukin, G., Zimmermann, F. et al. Effect of the Ammonia Flow on the Formation of Microstructure Defects in GaN Layers Grown by High-Temperature Vapor Phase Epitaxy. J. Electron. Mater. 46, 1612–1619 (2017). https://doi.org/10.1007/s11664-016-5204-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5204-z

Keywords

  • GaN layers
  • microstructure defects
  • photoluminescence
  • x-ray diffraction
  • transmission electron microscopy
  • micro-Raman spectroscopy