Skip to main content

Advertisement

Log in

Simulation and Fabrication of Wagon-Wheel-Shaped Piezoelectric Transducer for Raindrop Energy Harvesting Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Harvesting vibrational energy from impacting raindrops using piezoelectric material has been proven to be a promising approach for future outdoor applications, providing a good alternative resource that can be applied in outdoor rainy environments. We present herein an optimum novel polyvinylidene fluoride (PVDF) piezoelectric transducer specifically developed to harvest raindrop energy. The finite-element method was applied for simulation and optimization of the piezoelectric raindrop energy harvester (PREH) using COMSOL Multiphysics software, investigating the electrical potential, surface charge density, and total displacement for different transducer dimensions. According to the simulation results, the structure that generated the highest electrical potential and surface charge density was a wagon-wheel-shaped structure consisting of six spokes with wheel diameter of 30 mm, spoke width of 2 mm, center pad diameter of 6 mm, and thickness of 25 μm. This optimum wagon-wheel-shaped device was then fabricated by spin coating of PVDF, sputtering of aluminum, a poling process, and computer numerical control machining of a polytetrafluoroethylene stand. The fabricated PREH was characterized by x-ray diffraction analysis and Fourier-transform infrared spectroscopy. Finally, the fabricated PREH was tested under actual rain conditions with an alternating current to direct current converter connected in parallel, revealing that a single cell could generate average peak voltage of 22.5 mV and produce electrical energy of 3.4 nJ from ten impacts in 20 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.-K. Wong, J.-H. Ho, and E.H. Yap, J. Intell. Mater. Syst. Struct. (2014). doi:10.1177/1045389X14549871.

    Google Scholar 

  2. A.S. Grinspan and R. Gnanamoorthy, Colloid Surf. A Physicochem. Eng. Asp. 356, 162 (2010).

    Article  Google Scholar 

  3. E. Morrison and A. Decker, J. Emerg. Investig. (2015).

  4. R. Guigon, J.-J. Chaillout, T. Jager, and G. Despesse, Smart Mater. Struct. 17, 015039 (2008).

    Article  Google Scholar 

  5. D. Vatansever, R.L. Hadimani, T. Shah, and E. Siores, Smart Mater. Struct. 20, 055019 (2011).

    Article  Google Scholar 

  6. R. Guigon, J.-J. Chaillout, T. Jager, and G. Despesse, Smart Mater. Struct. 17, 015038 (2008).

    Article  Google Scholar 

  7. M. Al Ahmad and G.E. Jabbour, Electron. Lett. 48, 647 (2012).

    Article  Google Scholar 

  8. T. Alkhaddeim, B. AlShujaa, W. AlBeiey, F. AlNeyadi, and M.A. Ahmad, IEEE Sens. (2012). doi:10.1109/ICSENS. 2012.6411440.

  9. M. Al Ahmad, J. Electron. Mater. 43, 452 (2014).

    Article  Google Scholar 

  10. L. Valentini, S.B. Bon, and J. Kenny, J. Polym. Sci. Pt. B Polym. Phys. 51, 1028 (2013).

    Article  Google Scholar 

  11. F. Viola, P. Romano, R. Miceli, and G. Acciari, International Conference on Clean Electrical Power (ICCEP) (2013). doi:10.1109/ICCEP.2013.6586952.

  12. F. Viola, P. Romano, R. Miceli, G. Acciari, and C. Spataro, 9th International Conference on Ecology Vehicles Renewable Energies (EVER) (2014).

  13. R. Miceli, P. Romano, C. Spataro, and F. Viola, 20th IMEKO TC4 International Workshop on ADC Modelling and Testing Research on Electrical and Electronic Measurement for the Economic Upturn, 467 (2014).

  14. M.A. Ilyas and J. Swingler, Energy 90, 796 (2015).

    Article  Google Scholar 

  15. J.N. Sheng, C.J. Xiang, R.S. Jian, L.L. Xiao, S.L. Chun, and G.L. Yan, J. Appl. Meteorol. Climatol. 49, 632 (2009).

    Google Scholar 

  16. V. Sencadas, R. Gregorio Filho, and S. Lanceros-Mendez, J. Non-Cryst. Solids 352, 2226 (2006).

    Article  Google Scholar 

  17. T. Kaura, R. Nath, and M. Perlman, J. Phys. D Appl. Phys. 24, 1848 (1991).

    Article  Google Scholar 

  18. B. Mohammadi, A.A. Yousefi, and S.M. Bellah, Polym. Test 26, 42 (2007).

    Article  Google Scholar 

  19. R. Gunn and G.D. Kinzer, J. Meteorol. 6, 243 (1949).

    Article  Google Scholar 

  20. G. Cogfiran, M. Johnson, and P. Kadaba, J. Rehabil. Res. Dev. 24, 39 (1987).

  21. C.-H. Wong, Z. Dahari, A.A. Manaf, and M.A. Miskam, J. Electron. Mater. 44, 13 (2015).

    Article  Google Scholar 

  22. V. Sencadas, R. Gregorio Jr., and S. Lanceros-Méndez, J. Macromol. Sci. B Phys. 48, 514 (2009).

    Article  Google Scholar 

  23. J. Gomes, J.S. Nunes, V. Sencadas, and S. Lanceros-Méndez, Smart Mater. Struct. 19, 065010 (2010).

    Article  Google Scholar 

  24. M. Wegener and R. Gerhard-Multhaupt, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 921 (2003).

    Article  Google Scholar 

  25. V. Corral-Flores and D. Bueno-Baqués, Ferroelectrics—Material Aspects, ed. M. Lallart (Croatia: INTECH Open Access Publisher, 2011), p. 347.

    Google Scholar 

  26. R. Hadimani, D.V. Bayramol, N. Sion, T. Shah, L. Qian, S. Shi, and E. Siores, Smart Mater. Struct. 22, 075017 (2013).

    Article  Google Scholar 

  27. Y. Jiang, Y. Ye, J. Yu, Z. Wu, W. Li, J. Xu, and G. Xie, Polym. Eng. Sci. 47, 1344 (2007).

    Article  Google Scholar 

  28. W. Al-Ashtari, M. Hunstig, T. Hemsel, and W. Sextro, Sens. Actuator A Phys. 200, 138 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Research University Grant, Universiti Sains Malaysia, 1001/PELECT/814243.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuraini Dahari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, C.H., Dahari, Z., Jumali, .H. et al. Simulation and Fabrication of Wagon-Wheel-Shaped Piezoelectric Transducer for Raindrop Energy Harvesting Application. J. Electron. Mater. 46, 1587–1597 (2017). https://doi.org/10.1007/s11664-016-5201-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5201-2

Keywords

Navigation