Skip to main content

Thermoelectric Properties of Poly(selenophene-co-3, 4-ethylenedioxythiophene) via Electropolymerization

Abstract

Conducting polymers as thermoelectric (TE) materials have drawn extensive attention most recently because they are intrinsically light weight, flexible, highly processable, abundant in nature, and have especially low thermal conductivity. Relative studies have been focused on several typical structures such as polyacetylene, polyaniline, polythiophenes. However, TE performance of polyselenophenes have drawn very little attention because of its unstability and difficulty in synthesis. Previously, our group demonstrated that polyselenophene revealed high Seebeck coefficient (>180 μV K−1), but their electrical conductivity was very low (typically 10−5–10−2 S cm−1). For the sake of improving the thermoelectric performance of polyselenophene, the simplest and most effective method is to copolymerize with other high-performance thermoelectric materials. Herein, 3,4-ethylenedioxythiophene (EDOT), the monomer precursor of poly(3,4-ethylenedioxythiophene) (probably the best organic thermoelectric materials so far) was chosen to copolymerize with selenophene (SE) under different feeding ratios via electropolymerization to improve the thermoelectric performance. It is found that the electrical conductivity of all the copolymer films was obviously enhanced with the highest value of 0.91 S cm−1 by inserting EDOT in the conjugated block, whereas their Seebeck coefficient was brought down to 12 μV K−1. In this work, We obtained four different feeding ratios copolymers of SE and EDOT, 2:1 (PA), 1:1 (PB), 1:2 (PC), and 1:5 (PD). The copolymers had improved electrical conductivity and environmental stability compared with polyselenophene. Furthermore, with increasing the feeding ratio of EDOT, the TE performance of the copolymers was significantly improved.

This is a preview of subscription content, access via your institution.

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  2. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  3. H.J. Goldsmid, Thermoelectric Refrigeration, Vol. 1135 (New York: Plenum Press, 1964).

    Book  Google Scholar 

  4. S.L. Ming, S.J. Zhen, K.W. Lin, L. Zhao, J.K. Xu, B.Y. Lu, L.Y. Wang, J.H. Xiong, and Z.Y. Zhu, J. Electron. Mater. 6, 1606 (2015).

    Article  Google Scholar 

  5. M. Leclerc and A. Najari, Nat. Mater. 10, 409 (2011).

    Article  Google Scholar 

  6. N. Dubey and M. Leclerc, J. Polym. Sci. B Polym. Phys. 49, 467 (2011).

    Article  Google Scholar 

  7. B.Y. Lu, S. Chen, J.K. Xu, and G.Q. Zhao, Synth. Met. 183, 8 (2013).

    Article  Google Scholar 

  8. R. Zuzok, A.B. Kaiser, W. Pukacki, and S.J. Roth, Chem. Phys. 95, 1270 (1991).

    Google Scholar 

  9. Y.W. Park, Synth. Met. 45, 173 (1991).

    Article  Google Scholar 

  10. N. Mateeva, H. Niculescu, J. Schlenoff, and L.R. Testardi, J. Appl. Phys. 83, 3111 (1998).

    Article  Google Scholar 

  11. B.Y. Lu, C.C. Liu, S. Lu, J.K. Xu, F.X. Jiang, Y.Z. Li, and Z. Zhang, Chin. Phys. Lett. 27, 057201 (2010).

    Article  Google Scholar 

  12. F.X. Jiang, J.K. Xu, B.Y. Lu, Y. Xie, R.J. Huang, and L.F. Li, Chin. Phys. Lett. 25, 2202 (2008).

    Article  Google Scholar 

  13. B.Y. Lu, S.J. Zhen, S.M. Zhang, J.K. Xu, and G. Zhao, Polym. Chem. 5, 4896 (2014).

    Article  Google Scholar 

  14. M. Sendur, A. Balan, D. Baran, B. Karabay, and L. Toppare, Org. Electron. 11, 1877 (2010).

    Article  Google Scholar 

  15. J. Dupont, C.S. Consorti, P.A.Z. Suarez, R.F. de Souza, S.L. Fulmer, D.P. Richardson, T.E. Smith, and S. Wolff, Org. Synth. 7, 236 (2002).

    Google Scholar 

  16. S.J. Zhen, B.Y. Lu, J.K. Xu, S.M. Zhang, and Y.Z. Li, RSC Adv. 4, 14001 (2014).

    Article  Google Scholar 

  17. A. Durmus, G.E. Gunbas, P. Camurlu, and L. Toppare, Chem. Commun. 31, 3246 (2007).

    Article  Google Scholar 

  18. A. Cihaner and F. Algi, Adv. Funct. Mater. 18, 3583 (2008).

    Article  Google Scholar 

  19. S. Sharma and M. Bendikov, Chem. Eur. J. 19, 13127 (2013).

    Article  Google Scholar 

  20. B.Y. Lu, S.J. Zhen, S.L. Ming, J.K. Xu, and G.Q. Zhao, RSC Adv. 5, 70649 (2015).

    Article  Google Scholar 

  21. J.K. Xu, J. Hou, S.S. Zhang, G.M. Nie, S.Z. Pu, L. Shen, and Q. Xiao, J. Electroanal. Chem. 578, 345 (2005).

    Article  Google Scholar 

  22. H.H. Zhou, G.Y. Han, D.Y. Fu, Y.Z. Chang, Y.M. Xiao, and H.J. Zhai, J. Power Sources 272, 203 (2014).

    Article  Google Scholar 

  23. M.G. Han and S.H. Foulger, Chem. Commun. 24, 3092 (2005).

    Article  Google Scholar 

  24. K.L. Xu, G.M. Chen, and D. Qiu, J. Mater. Chem. A. 1, 12395 (2013).

    Article  Google Scholar 

  25. H. Shi, C.C. Liu, J.K. Xu, H.J. Song, B.Y. Lu, F. Jiang, W.Q. Zhou, G. Zhang, and Q.L. Jiang, ACS Appl. Mater. Interfaces 5, 12811 (2013).

    Article  Google Scholar 

  26. R.R. Yue and J.K. Xu, Synth. Met. 162, 912 (2012).

    Article  Google Scholar 

  27. G. Chen, M.S. Dresselhaus, G. Dresselhaus, and J.P. Fleurial, Int. Mater. Rev. 48, 45 (2003).

    Article  Google Scholar 

  28. Q. Jiang, C.C. Liu, H.J. Song, H. Shi, Y.Y. Yao, J.K. Xu, G. Zhang, and B.Y. Lu, J. Mater. Sci.: Mater. Electron. 24, 4240 (2013).

    Google Scholar 

  29. N. Toshima, Macromol. Symp. 186, 81 (2002).

    Article  Google Scholar 

  30. Y. Hiroshige, M. Ookawa, and N. Toshima, Synth. Met. 157, 467 (2007).

    Article  Google Scholar 

  31. R.B. Aïch, N. Blouin, A. Bouchard, and M. Leclerc, Chem. Mater. 21, 751 (2009).

    Article  Google Scholar 

  32. G.E. Gunbas, A. Durmus, and L. Toppare, Adv. Mater. 20, 691 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoyang Lu or Jingkun Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, H., Ming, S., Lin, K. et al. Thermoelectric Properties of Poly(selenophene-co-3, 4-ethylenedioxythiophene) via Electropolymerization. J. Electron. Mater. 46, 3124–3130 (2017). https://doi.org/10.1007/s11664-016-5197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5197-7

Keywords

  • Thermoelectricity
  • polyselenophene
  • PEDOT
  • electrical conductivity
  • Seebeck coefficient
  • power factor