Skip to main content
Log in

Eliminating Whisker Growth by Indium Addition in Electroplated Sn on Copper Substrate

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Whisker growth from Sn coatings is a reliability concern in electronic packages, until recently mitigated by Pb addition. Recently, it was demonstrated that doping with In dramatically reduces whisker growth in 1 μm thick Sn. Here, we present the results of In-doping on whisker growth from 3 μm and 6 μm thick Sn-films and explore the reasons behind this mitigation, and compare the results with a baseline sample of pure Sn and a control sample of tri-layer Sn-In-Sn, all subjected to identical thermal treatments. It is shown that In addition completely stops whisker growth from electroplated Sn. The impact of In addition on the film microstructure and the role of the surface oxide coating are investigated. Previous work had shown that while In addition reduces grain boundary diffusivity, it does not fully account for the observed dramatic reduction of whisker growth. In this work, it is shown by Auger electron spectroscopy and x-ray photoelectron spectroscopy that In is incorporated in the surface-oxide. Since whisker-growth is contingent on the presence of a tenacious surface-oxide, this suggests that the alteration of the oxide properties may be responsible for the observed reduction in whisker growth. Finite element modeling is utilized to demonstrate that a reduction of the elastic modulus of the surface oxide would reduce the driving force of Sn whisker growth, thus proffering a rationale for the effect of In incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Brusse, G.J. Ewell, and J.P. Siplon, in 22nd Capacitor and Resistor Technology Symposium, (2002), p. 67.

  2. H. Leidecker and J.A. Brusse, Tin whiskers: a history of documented electrical system failures–technical presentation to space shuttle program office (2006), http://nepp.nasa. gov/whisker. Accessed 25 April 2006

  3. K.G. Compton, A. Mendizza, and S.M. Arnold, Corrosion 7, 327 (1951).

    Article  Google Scholar 

  4. S.M. Arnold, in Proceedings of the IEEE Electrical Components Conference, (1959), p. 75

  5. S.M. Arnold, Plating 53, 96 (1966).

    Google Scholar 

  6. J.W. Osenbach, J.M. DeLucca, B.D. Potteiger, A. Amin, and F.A. Baiocchi, J. Mater. Sci. Mater. Electron. 18, 283 (2007).

    Article  Google Scholar 

  7. J. Cheng, P.T. Vianco, B. Zhang, and J.C.M. Li, Appl. Phys. Lett. 98, 241910 (2011).

    Article  Google Scholar 

  8. S.M. Miller, U. Sahaym, and M.G. Norton, Mater. Metall. Trans. A 41, 3386 (2010).

    Article  Google Scholar 

  9. I. Dutta, M. Burkard, S. Kuwano, T. Fujita, and M.W. Chen, J. Mater. Sci. 45, 3367 (2010).

    Article  Google Scholar 

  10. M. Sobiech, U. Welzel, E.J. Mittemeijer, W. Hugel, and A. Seekamp, Appl. Phys. Lett. 93, 1 (2008).

    Article  Google Scholar 

  11. K. Zeng and K.N. Tu, Mater. Sci. Eng., R 38, 55 (2002).

    Article  Google Scholar 

  12. W.J. Boettinger, C.E. Johnson, L.A. Bendersky, K.W. Moon, M.E. Williams, and G.R. Stafford, Acta Mater. 53, 5033 (2005).

    Article  Google Scholar 

  13. M. Sobiech, J. Teufel, U. Welzel, E.J. Mittemeijer, and W. Huegel, J. Electron. Mater. 40, 2300 (2011).

    Article  Google Scholar 

  14. J.P. Winterstein and M.G. Norton, J. Mater. Res. 21, 2971 (2006).

    Article  Google Scholar 

  15. I. Fujimura, E.J.Vardaman, and T.G. Lenihan, ASME in InterPACK Conference, San Francisco, California (2009), pp. 1457–1462.

  16. A. Dimitrovska and R. Kovacevic, J. Electron. Mater. 38, 2726 (2009).

    Article  Google Scholar 

  17. E. Sandnes, M.E. Williams, M.D. Vaudin, and G.R. Strafford, J. Electron. Mater. 37, 490 (2007).

    Article  Google Scholar 

  18. N. Jadhav, M. Williams, F. Pei, G. Stafford, and E. Chason, J. Electron. Mater. 42, 312 (2013).

    Article  Google Scholar 

  19. E.A. Brandes and G.B. Brook, Smithells Metals Reference Book, 7th ed. (Oxford: Butterworth-Heinemann Ltd, 1992), p. 13.

    Google Scholar 

  20. H.E. Schoeller, Thermodynamics and kinetics of oxidation and temperature dependent mechanical characterization of pure indium solder, Thesis BSME. State University of New York at Binghamton, pp. 112–115 (2005)

  21. Y.-P. Du, J.-C. Chen, and J. Feng, Acta Phys. Chim. Sin. 25, 278 (2009).

    Google Scholar 

  22. G.E. McGuire, Auger Electron Spectroscopy Reference Manual, 1st ed. (New York: Springer Science Business Media, 1979), pp. 98–103.

    Book  Google Scholar 

  23. K.W. Moon, C.E. Johnson, M.E. Williams, O. Kongstein, G.R. Stafford, C.A. Handwerker, and W.J. Boettinger, J. Electron. Mater. 34, L31 (2005).

    Article  Google Scholar 

  24. E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar, Appl. Phys. Lett. 92, 171901 (2008).

    Article  Google Scholar 

  25. H. Leidecker and J. S. Kadesch, in Proceedings of the 37th IMAPS Nordic Annual Conference, (2000), pp. 108–116

  26. M. Osterman, Mitigation strategies for tin whiskers (2002), http://www.calce.umd.edu/lead-free/tin-whiskers/TINWHI SKERMITIGATION.pdf. Accessed 28 August 2002

  27. K.N. Tu and J.C.M. Li, Mater. Sci. Eng., A 409, 131 (2005).

    Article  Google Scholar 

  28. T.A. Woodrow and E.A. Ledbury, in Proceedings of SMTA International Conference, Rosemont, IL (2006), p. 1

  29. L. Meinshausen, S. Bhassyvasantha, B.S. Majumdar, and I. Dutta, J. Electron. Mater. 45, 791 (2016).

    Article  Google Scholar 

  30. L. Meinshausen, S. Banerjee, I. Dutta, and B.S. Majumdar, in Proceedings of ASME InterPACK/ICNMM, San Francisco CA, (2015), pp. A21–A28

  31. MatWeb Material Property Data (2016), http://www.mat web.com/search/datasheet.aspx?matguid=64d7cf04332e42 8dbca9f755f4624a6c&ckck=1. Accessed 20 June 2016.

  32. A.J. Bevolo, J.D. Verhoeven, and M. Noack, Surf. Sci. 134, 499 (1983).

    Article  Google Scholar 

  33. C. Xirouchaki, K. Moschovis, E. Chatzitheodoridis, G. Kiriakidis, H. Boye, and P. Morgen, J. Electron. Mater. 28, 26 (1999).

    Article  Google Scholar 

  34. Thermo-scientific XPS knowledge base (2016), http://xpssi mplified.com/elements/indium.php. Accessed 15 April 2016

  35. K.N. Tu, Phys. Rev. B 49, 2030 (1994).

    Article  Google Scholar 

  36. S. Banerjee, I. Dutta, and B.S. Majumdar, Mater. Sci. Eng. A 666, 191 (2016).

    Article  Google Scholar 

  37. N. Jadhav, J. Wasserman, F. Pei, and E. Chason, J. Electron. Mater. 41, 588 (2012).

    Article  Google Scholar 

  38. H. Chen, H.Y. Lee, C.S. Ku, and A.T. Wu, J. Mater. Sci. 51, 3600 (2016).

    Article  Google Scholar 

  39. A.E. Pedigo, C.A. Handwerker, and J.E. Blendell, in Proceedings of the 58th Electronic Components and Technology Conference, (2008), pp. 1498–1504

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das Mahapatra, S., Majumdar, B.S., Dutta, I. et al. Eliminating Whisker Growth by Indium Addition in Electroplated Sn on Copper Substrate. J. Electron. Mater. 46, 4062–4075 (2017). https://doi.org/10.1007/s11664-016-5177-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5177-y

Keywords

Navigation