Skip to main content
Log in

Effect of Sn Grain Orientation on Formation of Cu6Sn5 Intermetallic Compound Under Current Stressing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Solder joints with Cu/Sn-Ag/Cu structure and bump height of 15 μm have been used to investigate the electromigration phenomenon at different temperatures and current densities. Moreover, the grain orientation was analyzed using electron backscatter diffraction. It was found that the anisotropic properties of tin affected the formation rate of Cu-Sn intermetallic compounds (IMCs), and that the angle between the electron flow direction and tin grain orientation played an important role in the formation of Cu6Sn5 IMC. With changes in angle, the diffusion rate of copper atoms in tin also varied. When the c-axis of tin was parallel to the electron flux, copper atoms diffused rapidly, resulting in fast formation of Cu-Sn IMCs. On the other hand, if the angle between the c-axis of the grain and the electron flow direction was large, the tin grains were more resistant to Cu diffusion during current stressing, leading to a very slow IMC formation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.E. Garrou, C.A. Bower, and P. Ramm, Handbook of 3D Integration: Technology and Applications of 3D Integrated Circuits (Weinheim: Wiley-VCH, 2008).

    Book  Google Scholar 

  2. K.N. Tu, Microelectron. Reliab. 51, 517 (2011).

    Article  Google Scholar 

  3. C. Chen, D. Yu, and K.N. Chen, MRS Bull. 40, 257 (2015).

    Article  Google Scholar 

  4. Y.W. Chang, C. Chen, T.C. Chang, C.J. Zhan, J.Y. Juang, and A.T. Huang, Mater. Lett. 137, 136 (2014).

    Article  Google Scholar 

  5. Y.W. Chang, H.Y. Peng, R.W. Yang, C. Chen, T.C. Chang, C.J. Zhan, J.Y. Juang, and A.T. Huang, Microelectron. Reliab. 53, 41 (2013).

    Article  Google Scholar 

  6. K.N. Tu, Microelectron. Reliab. 53, 1 (2013).

    Article  Google Scholar 

  7. T.C. Huang, T.L. Yang, J.H. Ke, C.H. Hsueh, and C.R. Kao, Scr. Mater. 80, 37 (2014).

    Article  Google Scholar 

  8. D.C. Yeh and H.B. Huntington, Phys. Rev. Lett. 53, 1469 (1984).

    Article  Google Scholar 

  9. M.H. Lu, D.Y. Shih, P. Lauro, C. Goldsmith, and D.W. Henderson, Appl. Phys. Lett. 92, 211909 (2008).

    Article  Google Scholar 

  10. A. Tasooji, L. Lara, and K. Lee, J. Electron. Mater. 43, 4386 (2014).

    Article  Google Scholar 

  11. C. Kinney, X. Linares, K.O. Lee, and J.W. Morris Jr, J. Electron. Mater. 42, 607 (2013).

    Article  Google Scholar 

  12. T.L. Yang, J.J. Yu, C.C. Li, Y.F. Lin, and C.R. Kao, J. Alloys Compd. 627, 281 (2015).

    Article  Google Scholar 

  13. S.W. Liang, Y.W. Chang, and C. Chen, J. Electron. Mater. 36, 1348 (2007).

    Article  Google Scholar 

  14. T. Tian, A. M. Gusak, O. Y. Liashenko, J. K. Han, D. Choi, and K. N. Tu, in Proceeding of IEEE 62nd Electron. Components and Technology Conference, vol. 741 (2012). doi:10.1109/ECTC.2012.6248915.

  15. K.N. Tu, J.W. Mayer, and L.C. Feldman, Electronic Thin Film Science: For Electrical Engineers and Materials Scientists (New York: Macmillan, 1992).

    Google Scholar 

  16. J.Q. Chen, J.D. Guo, K.L. Liu, and J.K. Shang, J. Appl. Phys. 114, 153509 (2013).

    Article  Google Scholar 

  17. C.C. Wei, C.F. Chen, P.C. Liu, and C. Chen, J. Appl. Phys. 105, 023715 (2009).

    Article  Google Scholar 

  18. C. Chen, H.M. Tong, and K.N. Tu, Annu. Rev. Mater. Res. 40, 531 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, MY., Lin, Hw. & Chen, C. Effect of Sn Grain Orientation on Formation of Cu6Sn5 Intermetallic Compound Under Current Stressing. J. Electron. Mater. 46, 2179–2184 (2017). https://doi.org/10.1007/s11664-016-5154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5154-5

Keywords

Navigation